Много лет я занимаюсь разработкой событийной семантики [1, 2], событийной логики [3], спецификации языка описания деятельности, а также Event Flow архитектуры [4], на базе которой построен семантический workflow-движок. Все это выросло из идеи субъектно- событийного подхода к моделированию сложных систем [5], который условно можно считать инженерным наследником философской темпоральной онтологии [6, 7].
И вот, некоторое время назад я решил провести эксперимент и научить ChatGPT создавать и исполнять событийные модели. Результат сообщу сразу: это у меня получилось, хотя и не без головной боли, с постоянными упрашиваниями, подсказками, напоминаниями… Но по порядку.
Упомянутый Event Flow движок работает с событийными семантическими моделями, описывающими сущности или действия какой-либо предметной области. Он проглатывает очередное модельное событие (согласно условиям, прописанным в этом событии) и либо строит по нему поле экранной формы, если значение надо получить от человека, либо выполняет запрос к уже имеющимся данным, создавая в итоге новое предметное событие. Таким образом после выполнения всех событий одной модели у нас получается индивид сущности или действия, а по сути, выполняется фрагмент бизнес-логики. (В Приложении есть несколько слов о событийной семантике от самого ChatGPT).
Что требовалось от ChatGPT? (1) Запомнить формат записи событий; (2) освоить синтаксис инициации свойств и актов, правила построения моделей и создания индивидов; (3) научиться по текстовому описанию строить модели и (4) при предоставлении в текстовом же виде конкретных значений - создавать индивиды. При этом, что существенно, в модели могут иметься запросы к значениям уже созданных индивидов.