
На приобретение Yubikey меня вдохновил
Реверс-инженер
Игры под DOS с открытым исходным кодом — редкость. Однако спустя много лет некоторые разработчики всё же решили выпустить в свет исходники. Большинство из них уже переписаны на SDL, благодаря чему их можно перенести практически на любую современную платформу, но какой в этом челлендж? В статье будем компилировать двоичные файлы для DOS!
Вы когда-нибудь задумывались, как много вокруг умной электроники? Куда ни глянь, натыкаешься на устройство, в котором есть микроконтроллер с собственной прошивкой. Фотоаппарат, микроволновка, фонарик... Да даже некоторые USB Type C кабели имеют прошивку! И всё это в теории можно перепрограммировать, переделать, доработать. Вот только как это сделать без документации и исходников? Конечно же реверс-инжинирингом! А давайте-ка подробно разберём этот самый процесс реверса, от самой идеи до конечного результата, на каком-нибудь небольшом, но интересном примере!
Проводится сеанс разоблачения магии (CISC, RISC, OoO, VLIW, EPIC, ...).
Без традиционной рубрики “а что, если” тоже не обошлось.
Добро пожаловать под кат, правда, лёгкого чтения ожидать не стоит.
В процессе обратной разработки прошивок иногда возникает задача по ее эмуляции, например, для фаззинг тестирования или детального изучения поведения в динамике. На практике обычно для этого хватает фреймворков avatar2, unicorn, qiling и подобных. Однако они поддерживают далеко не все платформы и имеют ряд ограничений для решения таких задач. При разработке эмулятора PLC я столкнулся с тем, что ни один фреймворк для эмуляции не поддерживал требуемую платформу.
Частично эти ограничения снимает разработка эмулятора на базе qemu, однако статей по этой тематике в сети достаточно мало, а официальная документация не содержит примеров реализации простых девайсов. В этой статье я хотел бы восполнить этот недостаток и поделиться своим небольшим опытом по реализации машины в qemu, чтобы сэкономить время начинающих разработчиков и исследователей безопасности, сталкивающихся с похожей задачей.
В 2016 году американский музыкант Sergio Elisondo опубликовал музыкальный альбом инструментальных кавер-версий A Winner Is You (отсылка к древнему мему, происходящему из классической игры Pro Wrestling), в котором он в одиночку исполнял музыку из популярных игр для восьмибитной приставки NES на настоящих музыкальных инструментах. Необычным дополнением к этому релизу стала его версия в виде картриджа для игровой приставки NES, запускаемая на ней и воспроизводящая музыку из альбома в виде полноценного аудио, а не типичного для этой приставки довольно примитивного синтезированного звука. Я занимался разработкой программной части этого не вполне обычного проекта.
Собственно идея написать эту статью как памятку себе любимому, ну может ещё кому пригодится пришла в голову год назад, после того как убил немало времени на это нехитрое занятие. Недавно оказалось, что проблема актуальна по сей день. Почему-то ни один из найденных вариантов сам по себе не помогает и данная статься является результатом обработки всей найденной информации. При решении вопроса, больше всего бесило - возьмите мой проект и будет вам счастье, а проекта там уже и нет... Такой подход я плохо переношу, поэтому и сам делать так не буду.
Всё ниже описанное является следствием моего личного опыта, и ни на какую истинность не претендует. Все советы рассчитаны не людей только решившихся на переход с AVR на STM32
Вопросы типа почему Linux, VSCode и прочее, думаю, освещения не требуют. Считаю, что все заинтересованные в вопросе, на эти мелочи давно нашли СВОЙ ответ. Однако отмечу, в Винде всё это тоже работает, проверено, и проекты спокойно переживают миграцию между машинами.
Пожалуй начнём!
Нет, конечно же, не убивает.
То, что мертво, умереть не может: доля линукса на десктопах колеблется около 2% уже много лет, и не имеет тенденций ни к росту, ни к падению, изменяясь на уровне статистической погрешности.
Как выглядит захват рынка конкурентоспособным продуктом, можно видеть на примере, например, Chrome: за 10 лет рост на 70%. Или Android: за 5 лет рост на 75%. А вот у Linux рост пол-процента в год, несмотря на то, что он, например, лучший из существующих вариантов для использования в качестве национальных/государственных ОС.
Так в чем же дело? Почему несмотря на все старания, Linux, который стал стандартом де-факто на встраиваемых устройствах, работает на подавляющем большинстве серверов, целиком захватил рынок суперкомпьютеров, Linux, над которым работают сотни компаний и десятки тысяч людей... практически не используется на обычных компьютерах и ноутбуках?
Причины этой ситуации, как ни странно, те же, что сыграли роль в популярности Linux на серверах: unix-way, "Философия Unix": "Пишите программы, которые делают что-то одно, и делают это хорошо, и имеют возможность получать и принимать данные через текстовый интерфейс (потому что он универсален)".
В этой небольшой серии статей я попытаюсь пролить свет на тему построения Embedded Linux устройств, начиная от сборки загрузчика и до написания драйвера под отдельно разработанный внешний модуль с автоматизацией всех промежуточных процессов.
Платформой послужит плата BeagleBone Black с процессором производства Техасских Инструментов AM3358 и ядром Arm Cortex-A8, и, чтобы не плодить мигающие светодиодами мануалы, основной задачей устройства будет отправка смайлов в топовый чат, широко известного в узких кругах, сайта, в соответствии с командами от смайл-пульта. Впрочем, без мигания светодиодами тоже не обошлось.
Тайлы - пожалуй один из самых удобных способов построения игровой логики. Все происходит максимально дискретно, никаких тебе физик с просчетом коллизий и прочими трудностями.
Огромное множество игр на самом деле содержат тайлы - так просто проще представлять игровой мир. Такая упорядоченность помогает геймдизайнерам строить игровые механики, упрощает жизнь художников и делает код программистов понятнее. Самих видов тайлов тоже огромное количество - сегодня поговорим о прямоугольных и изометрических.
Осторожно: 1) Гифки тяжелые! 2) Много ярких мигающих картинок!
Когда мы разрабатывали модуль ghidra nodejs для инструмента Ghidra, мы поняли, что не всегда получается корректно реализовать опкод V8 (движка JavaScript, используемого Node.js) на языке описания ассемблерных инструкций SLEIGH. В таких средах исполнения, как V8, JVM и прочие, один опкод может выполнять достаточно сложные действия. Для решения этой проблемы в Ghidra предусмотрен механизм динамической инъекции конструкций P-code — языка промежуточного представления Ghidra. Используя этот механизм, нам удалось превратить вывод декомпилятора из такого:
В прошлом году наша команда столкнулась с необходимостью анализа байткода V8. Тогда еще не существовало готовых инструментов, позволявших восстановить такой код и обеспечить удобную навигацию по нему. Было принято решение попробовать написать процессорный модуль под фреймворк Ghidra. Благодаря особенностям используемого языка описания инструкций на выходе мы получили не только читаемый набор инструкций, но и C-подобный декомпилятор. Эта статья — продолжение серии материалов (1, 2) о нашем плагине для Ghidra.
Между написанием процессорного модуля и статьи прошло несколько месяцев. За это время спецификация SLEIGH не изменилась, и описанный модуль работает на версиях 9.1.2–9.2.2, которые были выпущены за последние полгода.
Сейчас на ghidra.re и в приложенной к Ghidra документации есть достаточно хорошее описание возможностей языка — эти материалы стоит почитать перед написанием своих модулей. Отличными примерами могут быть уже готовые процессорные модули разработчиков фреймворка, особенно если вы знаете описываемую в них архитектуру.
В документации можно прочесть, что процессорные модули для Ghidra пишутся на языке SLEIGH, который произошел от языка SLED (Specification Language for Encoding and Decoding) и разрабатывался целенаправленно под Ghidra. Он транслирует машинный код в p-code (промежуточный язык, используемый Ghidra для построения декомпилированного кода). Как у языка, предназначенного для описания инструкций процессора, у него достаточно много ограничений, которые, однако, можно купировать за счет механизма внедрения p-code в java-коде.
Исходный код созданного процессорного модуля представлен на github. В этой статье будут рассматриваться принципы и ключевые понятия, которые использовались при разработке процессорного модуля на чистом SLEIGH на примере некоторых инструкций. Работа с пулом констант, инъекции p-code, анализатор и загрузчик будут или были рассмотрены в других статьях. Также про анализаторы и загрузчики можно почитать в книге The Ghidra Book: The Definitive Guide.
В этой подборке представлены полезные малоизвестные консольные Linux утилиты. В списке не представлены Pentest утилиты, так как у них есть своя подборка.
Осторожно много скриншотов. Добавил до ката утилиту binenv.
binenv — cамая интересная утилита для установки новых популярных программ в linux, но которых нет в пакетном менеджере.