Pull to refresh
17
Karma
0
Rating
  • Followers 1
  • Following

GSM-ловушки: ещё один привет от Большого Брата

Реверснул этот Spy Finder. Судя по всему он использует только легальный API андроида, вытаскивая всевозможные параметры. А проги, требующие рута и конкретные чипсеты, могу достать больше. Вот список параметров, которые прога принимает к сведению:
  • Cell ID
  • Country ISO
  • Наличие интернет-данных
  • IMEI
  • IMSI
  • LAC
  • Долгота, широта вышки
  • MCC, MNC
  • Тип сети: 2G, 3G, UMTS, CDMA...
  • PSC (только для UMTS)
  • Инфа об операторе
  • Уроверь, dB

Всё это реально вытащить на любом телефоне.

GSM-ловушки: ещё один привет от Большого Брата

Чтобы записывать все разговоры всех людей, это ж какие объёмы хранелищ надо иметь???

GSM-ловушки: ещё один привет от Большого Брата

с СОРМом бюрократии больше. А тут поднял соту и развлекайся.

GSM-ловушки: ещё один привет от Большого Брата

доля GSM неуклонно падает, но пару лет назад оно было примерно так, сейчас согласен, меньше. Вот здесь хорошая статистика.

GSM-ловушки: ещё один привет от Большого Брата

кстати да. Вот чуваки надо фемтосотой поиздевались: видео

GSM-ловушки: ещё один привет от Большого Брата

Смысла нет, так как на практике используется T-IMSI — рандомный номер вместо IMSI, для анонимизации. Придётся перехватывать момент, когда он генериться.

GSM-ловушки: ещё один привет от Большого Брата

Закрытость = мы не можем на неё влиять. Равно как и не можем «пощупать».
Плюс, если все спеки собрать воедино, то там получается какое-то гиганское кол-во инфы, всякие TCPIP рядом не стояли…

Статистическая проверка случайности двоичных последовательностей методами NIST

А, понял причину вашего смущения. Попробую пояснить. Пример: взяли α = 0.001. Это всего лишь означает, что из 1000 последовательностей мы готовы незаслуженно отбраковать одну. (Та самая ошибка первого рода). Это конечно же не означает, что из этих 1000 мы заапрувим 999. В криптографии обычно берут 0.001 < α < 0.01.

Статистическая проверка случайности двоичных последовательностей методами NIST

Проблема в предсказуемости. Ваш микрофон может шуметь похожим образом с микрофоном вашего соседа. Или они узнают, какая у вас аудиокарта, купят такую же, и будут развлекаться )). Свет на марсе и радиоэфир более или менее одинаков для группы людей.

Наиболее реально, это всяческие шумящие диоды и их лавинные пробои. Вот они дают «кошерные» числа. Например как тут: holdenc.altervista.org/avalanche/

Статистическая проверка случайности двоичных последовательностей методами NIST

Вопрос интересный Получается так, что если тест пройден, то об алогритме ничего сказать и нельзя! А если НЕ пройден, то уже можно строить догадки. Например если тест на LFSR показал плохой результат, то в алгоритме скорее всего затесался регистр сдвига. Или если не прошёл спектральный тест, то наложились некие пероидические сигналы.

Статистическая проверка случайности двоичных последовательностей методами NIST

И отвечаю по P-значениям. Alpha — это как бы «уровень строгости». Чем оно меньше, тем «сложнее» последовательностям проходить тесты, но уж если тест пройден, то с более высоким уровнем доверия.

Статистическая проверка случайности двоичных последовательностей методами NIST

На сайте Ниста она выкладывают исходники этих всех тестов. Скачайте и прогоните через тесты ))

Статистическая проверка случайности двоичных последовательностей методами NIST

Конечно, каждый тест заточен на поиск определённой взаимосвязи.

Information

Rating
Does not participate
Registered
Activity