• Машинный перевод. От Холодной войны до наших дней

      Машинный перевод в последние годы получил очень широкое распространение. Наверняка, большинство моих читателей хоть раз пользовались сервисами Google.Translate или Яндекс.Перевод. Также вероятно, что многие помнят, что не так уж и давно, лет 5 назад пользоваться автоматическими переводчиками было очень непросто. Непросто в том смысле, что они выдавали перевод очень низкого качества. Под катом краткая и неполная история машинного перевода, из которой будет виден в этой задаче и некоторые его причины и последствия. А для начала картинка, которая показывает важную концепцию относительно машинного перевода:


      Читать дальше →
    • Курс Natural Language Processing (обработка естественного языка)

        Всем привет!


        UPD. 04.03.2020: Удалось договориться о записи лекций. Для первой лекции будет организована трансляция.


        Huawei Russian Research Institute (Huawei RRI) в рамках программы взаимодействия с ведущими российскими университетами (МФТИ, МГУ, МГТУ им. Н. Э. Баумана) представляет открытый курс “Natural Language Processing” или “Обработка естественного языка”, который пройдет на площадке московского корпуса Физтеха.


        Читать дальше →
      • Natural Language Processing. Итоги 2019 и тренды на 2020

          Всем привет. С некоторым запозданием я решил опубликовать эту статью. Каждый год я стараюсь подвести итоги произошедшего в области обработки естественного языка (natural language processing). Не стал исключением и этот год.

          BERTs, BERTs are everywhere


          Начнем по порядку. Если вы не уехали в глухую Сибирскую тайгу или отпуск на Гоа на последние полтора года, то вы наверняка слышали слово BERT. Появившись в самом конце 2018-ого за прошедшее время эта модель завоевала такую популярность, что в самый раз будет вот такая картинка:


          Читать дальше →
        • Применение сверточных нейронных сетей для задач NLP

            Когда мы слышим о сверточных нейронных сетях (CNN), мы обычно думаем о компьютерном зрении. CNN лежали в основе прорывов в классификации изображений — знаменитый AlexNet, победитель соревнования ImageNet в 2012 году, с которого начался бум интереса к этой теме. С тех пор сверточные сети достигли большого успеха в распознавании изображений, в силу того факта, что они устроены наподобие зрительной коры головного мозга — то есть умеют концентрироваться на небольшой области и выделять в ней важные особенности. Но, как оказалось, CNN хороши не только для этого, но и для задач обработки естественного языка (Natural Language Processing, NLP). Более того, в недавно вышедшей статье [1] от коллектива авторов из Intel и Carnegie-Mellon University, утверждается, что они подходят для этого даже лучше RNN, которые безраздельно властвовали областью на протяжении последних лет.

            Сверточные нейронные сети


            Для начала немного теории. Что такое свертка? Мы не будем на этом останавливаться подробно, так как про это написана уже тонна материалов, но все-таки кратко пробежаться стоит. Есть красивая визуализация от Стэнфорда, которая позволяет ухватить суть:

            image
            Источник
            Читать дальше →
          • Главные достижения в области обработки естественного языка в 2017 году

            • Translation

            Всем привет. Сразу поделим аудиторию на две части — тех, кто любит смотреть видео, и тех, кто, как я, лучше воспринимает тексты. Чтобы не томить первых, запись моего выступления на Дата-Ёлке:



            Там есть все основные моменты, но формат выступления не предполагает подробного рассмотрения статей. Любители ссылок и подробных разборов, добро пожаловать под кат.

            Читать дальше →
            • +61
            • 18.1k
            • 3
          • Чудесный мир Word Embeddings: какие они бывают и зачем нужны?

              Начать стоит от печки, то есть с постановки задачи. Откуда берется сама задача word embedding?
              Лирическое отступление: К сожалению, русскоязычное сообщество еще не выработало единого термина для этого понятия, поэтому мы будем использовать англоязычный.
              Сам по себе embedding — это сопоставление произвольной сущности (например, узла в графе или кусочка картинки) некоторому вектору.


              image

              Читать дальше →
            • Что такое диалоговые системы, или Кое-что об Элизе

                Диалоговые системы давно и прочно вошли в нашу жизнь. В заглавии упомянута и на картинке представлена ELIZA — диалоговая система-психоаналитик (сейчас, ее назвали бы чат-бот), родом из 60-ых годов. Если вам интересно, как человек дошел до общения с ботами-психоаналитиками и что еще есть интересного в диалоговых системах, добро пожаловать под кат.


                image
                Читать дальше →
                • +12
                • 10.5k
                • 8
              • Библиотеки для глубокого обучения: Keras

                  Привет, Хабр! Мы уже говорили про Theano и Tensorflow (а также много про что еще), а сегодня сегодня пришло время поговорить про Keras.


                  Изначально Keras вырос как удобная надстройка над Theano. Отсюда и его греческое имя — κέρας, что значит "рог" по-гречески, что, в свою очередь, является отсылкой к Одиссее Гомера. Хотя, с тех пор утекло много воды, и Keras стал сначала поддерживать Tensorflow, а потом и вовсе стал его частью. Впрочем, наш рассказ будет посвящен не сложной судьбе этого фреймворка, а его возможностям. Если вам интересно, добро пожаловать под кат.


                  image
                  Читать дальше →
                • Обучение с подкреплением: от Павлова до игровых автоматов


                    История обучения с подкреплением в зависимости от того, как считать насчитывает от полутора веков до 60 лет. Последняя волна (которая захлестывает сейчас нас всех) началась вместе с подъемом всего машинного обучения в середине 90-ых годов 20-ого века. Но люди, которые сейчас на гребне этой волны начинали само собой не сейчас, а во время предыдущего всплеска интереса — в 80-ых. В процессе знакомства с историей нам встретятся многие персонажи, который сыграли роль в становлении учения об искусственном интеллекте (которое мы обсуждали в прошлой статье). Само собой, это неудивительно, ведь обучение с подкреплением — его неотъемлемая часть. Хотя обо всем по порядку.


                    Само название “обучение с подкреплением” взято из работ известного русского физиолога, нобелевского лауреата Ивана Петровича Павлова. В 1923 вышел его труд “Двадцатилетний опыт объективного изучения высшей нервной деятельности (поведения) животных” [1], известный на западе как Conditional Reflexes [2]. Но психологические подходы были известны и ранее.

                    Читать дальше →
                  • Почему этой зимой мы снова приглашаем всех поиграть в компьютерные игры при помощи искусственного интеллекта

                      Хабр, МФТИ приветствует тебя! Как истинные технари, сразу переходим к делу и приглашаем всех, кому интересно, принять участие в новом хакатоне DeepHack, который пройдет на Физтехе с 6 по 12 февраля. Отборочный этап уже начался и продлится до 22 января. Это мы всё к чему… Если вы не понаслышке знаете, что такое DQN, deep RL и DeepHack сразу регистрируйтесь на очередную научную школу-хакатон — rl.deephack.me.

                      DeepHack

                      А если вы не до конца в теме и вам, например, не ясно, почему компьютерные игры, какое отношение они имеют к управлению дата-центрами и что на самом деле будет в феврале, то срочно идите под кат — там максимальное погружение в жизнь искусственного интеллекта от древности и до наших дней. Ну вы же не думаете, что всё это изобрели только в XXI веке?
                      Читать дальше →