Pull to refresh
18
0
Vasilii Zemlianov @re9ulus

Senior MLE

Send message

Quantization Deep Dive, или Введение в современную квантизацию

Level of difficultyMedium
Reading time16 min
Views21K

Привет! Меня зовут Василий Землянов, я занимаюсь разработкой ML-инфраструктуры. Несколько лет я проработал в команде, которая делает споттер — специальную маленькую нейросетевую модельку, которая живёт в умных колонках Яндекса и ждёт от пользователя слова «Алиса». Одной из моих задач в этой команде была квантизация моделей. На пользовательских устройствах мало ресурсов, и мы решили, что за счёт квантизации сможем их сэкономить — так в итоге и вышло.

Потом я перешёл в команду YandexGPT. Вместо маленьких моделей я стал работать с очень крупными. Мне стало интересно, как устроена квантизация больших языковых моделей (LLM). Ещё меня очень впечатляли истории, где люди берут гигантские нейросети, квантизируют в 4 бита и умудряются запускать их на ноутбуках. Я решил разобраться, как это делается, и собрал материал на доклад для коллег и друзей. А потом пришла мысль поделиться знаниями с более широкой аудиторией, оформив их в статью. Так я и оказался на Хабре :)

Надеюсь, погружение в тему квантизации будет интересно как специалистам, так и энтузиастам в сфере обучения нейросетей. Я постарался написать статью, которую хотел бы прочитать сам, когда только начинал изучать, как заставить модели работать эффективнее. В ней мы подробно разберём, зачем нужна квантизация и в какой момент лучше всего квантизовать модель, а ещё рассмотрим разные типы данных и современные методы квантизации.

Читать далее
Total votes 66: ↑65 and ↓1+81
Comments13

Отчет с Data Fest⁴ 11-12 февраля

Reading time2 min
Views8.4K


11-12 февраля в нашем московском офисе состоялась четвертая конференция Data Fest⁴, объединившая исследователей, инженеров и разработчиков, связанных с Data Science во всех его проявлениях. Под катом мы подготовили для вас видеоматериалы с конференции.
Total votes 32: ↑31 and ↓1+30
Comments1

PyMC3 — MCMC и не только

Reading time17 min
Views22K

PyMC3 — МСМС и не только



Привет, Хабрахабр!


В этом посте уже упоминался PyMC3. Там можно почитать про основы MCMC-сэмплирования. Здесь я расскажу про вариационный вывод (ADVI), про то, зачем все это нужно и покажу на довольно простых примерах из галереи PyMC3, чем это может быть полезно. Одним из таких примеров будет байесовская нейронная сеть для задачи классификации, но это в самом конце. Кому интересно — добро пожаловать!


Читать дальше →
Total votes 48: ↑42 and ↓6+36
Comments3

Библиотеки для глубокого обучения: Keras

Reading time13 min
Views172K

Привет, Хабр! Мы уже говорили про Theano и Tensorflow (а также много про что еще), а сегодня сегодня пришло время поговорить про Keras.


Изначально Keras вырос как удобная надстройка над Theano. Отсюда и его греческое имя — κέρας, что значит "рог" по-гречески, что, в свою очередь, является отсылкой к Одиссее Гомера. Хотя, с тех пор утекло много воды, и Keras стал сначала поддерживать Tensorflow, а потом и вовсе стал его частью. Впрочем, наш рассказ будет посвящен не сложной судьбе этого фреймворка, а его возможностям. Если вам интересно, добро пожаловать под кат.


image
Читать дальше →
Total votes 55: ↑55 and ↓0+55
Comments13

Открытый курс машинного обучения. Тема 8. Обучение на гигабайтах с Vowpal Wabbit

Reading time26 min
Views128K

Всем привет!



Вот мы постепенно и дошли до продвинутых методов машинного обучения. Сегодня обсудим, как вообще подступиться к обучению модели, если данных гигабайты или десятки гигабайт. Обсудим приемы, позволяющие это делать: стохастический градиентный спуск (SGD) и хэширование признаков, посмотрим на примеры применения библиотеки Vowpal Wabbit.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.


Видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017).

Читать дальше →
Total votes 43: ↑41 and ↓2+39
Comments21

Библиотека глубокого обучения Tensorflow

Reading time16 min
Views140K

Здравствуй, Хабр! Цикл статей по инструментам для обучения нейронных сетей продолжается обзором популярного фреймворка Tensorflow.


Tensorflow (далее — TF) — довольно молодой фреймворк для глубокого машинного обучения, разрабатываемый в Google Brain. Долгое время фреймворк разрабатывался в закрытом режиме под названием DistBelief, но после глобального рефакторинга 9 ноября 2015 года был выпущен в open source. За год с небольшим TF дорос до версии 1.0, обрел интеграцию с keras, стал значительно быстрее и получил поддержку мобильных платформ. В последнее время фреймворк развивается еще и в сторону классических методов, и в некоторых частях интерфейса уже чем-то напоминает scikit-learn. До текущей версии интерфейс менялся активно и часто, но разработчики пообещали заморозить изменения в API. Мы будем рассматривать только Python API, хотя это не единственный вариант — также существуют интерфейсы для C++ и мобильных платформ.

Читать дальше →
Total votes 83: ↑83 and ↓0+83
Comments15

Открытый курс машинного обучения. Тема 7. Обучение без учителя: PCA и кластеризация

Reading time19 min
Views205K

Привет всем! Приглашаем изучить седьмую тему нашего открытого курса машинного обучения!


Данное занятие мы посвятим методам обучения без учителя (unsupervised learning), в частности методу главных компонент (PCA — principal component analysis) и кластеризации. Вы узнаете, зачем снижать размерность в данных, как это делать и какие есть способы группирования схожих наблюдений в данных.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.


Видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017).

Читать дальше →
Total votes 53: ↑52 and ↓1+51
Comments8

Kaggle: Британские спутниковые снимки. Как мы взяли третье место

Reading time22 min
Views42K

Сразу оговорюсь, что данный текст — это не сухая выжимка основных идей с красивыми графиками и обилием технических терминов (такой текст называется научной статьей и я его обязательно напишу, но потом, когда нам заплатят призовые $20000, а то, не дай бог, начнутся разговоры про лицензию, авторские права и прочее.) (UPD: https://arxiv.org/abs/1706.06169). К моему сожалению, пока устаканиваются все детали, мы не можем поделиться кодом, который написали под эту задачу, так как хотим получить деньги. Как всё утрясётся — обязательно займемся этим вопросом. (UPD: https://github.com/ternaus/kaggle_dstl_submission)

Так вот, данный текст — это скорее байки по мотивам, в которых, с одной стороны, всё — правда, а с другой, обилие лирических отступлений и прочей отсебятины не позволяет рассматривать его как что-то наукоемкое, а скорее просто как полезное и увлекательное чтиво, цель которого показать, как может происходить процесс работы над задачами в дисциплине соревновательного машинного обучения. Кроме того, в тексте достаточно много лексикона, который специфичен для Kaggle и что-то я буду по ходу объяснять, а что-то оставлю так, например, вопрос про гусей раскрыт не будет.
Total votes 74: ↑74 and ↓0+74
Comments42

Байесовские многорукие бандиты против A/B тестов

Reading time20 min
Views65K

Здравствуйте, коллеги. Рассмотрим обычный онлайн-эксперимент в некоторой компании «Усы и когти». У неё есть веб-сайт, на котором есть красная кнопка в форме прямоугольника с закругленными краями. Если пользователь нажимает на эту кнопку, то где-то в мире мурлычет от радости один котенок. Задача компании — максимизация мурлыкания. Также есть отдел маркетинга, который усердно исследует формы кнопок и то, как они влияют на конверсию показов в клико-мурлыкания. Потратив почти весь бюджет компании на уникальные исследования, отдел маркетинга разделился на четыре противоборствующие группировоки. У каждой группировки есть своя гениальная идея того, как должна выглядеть кнопка. В целом никто не против формы кнопки, но красный цвет раздражает всех маркетологов, и в итоге было предложено четыре альтернативных варианта. На самом деле, даже не так важно, какие именно это варианты, нас интересует тот вариант, который максимизирует мурлыкания. Маркетинг предлагает провести A/B/n-тест, но мы не согласны: и так на эти сомнительные исследования спущено денег немерено. Попробуем осчастливить как можно больше котят и сэкономить на трафике. Для оптимизации трафика, пущенного на тесты, мы будем использовать шайку многоруких байесовских бандитов (bayesian multi-armed bandits). Вперед.

Читать дальше →
Total votes 67: ↑65 and ↓2+63
Comments50

Второе почетное. Заметки участника конкурса Dstl Satellite Imagery Feature Detection

Reading time9 min
Views15K


Недавно закончилось соревнование по машинному обучению Dstl Satellite Imagery Feature Detection в котором приняло участие аж трое сотрудников Avito. Я хочу поделиться опытом участия от своего лица и рассказать о решении.
Total votes 64: ↑61 and ↓3+58
Comments8

Открытый курс машинного обучения. Тема 6. Построение и отбор признаков

Reading time24 min
Views188K

Сообщество Open Data Science приветствует участников курса!


В рамках курса мы уже познакомились с несколькими ключевыми алгоритмами машинного обучения. Однако перед тем как переходить к более навороченным алгоритмам и подходам, хочется сделать шаг в сторону и поговорить о подготовке данных для обучения модели. Известный принцип garbage in – garbage out на 100% применим к любой задаче машинного обучения; любой опытный аналитик может вспомнить примеры из практики, когда простая модель, обученная на качественно подготовленных данных, показала себя лучше хитроумного ансамбля, построенного на недостаточно чистых данных.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.



Читать дальше →
Total votes 52: ↑52 and ↓0+52
Comments28

Открытый курс машинного обучения. Тема 5. Композиции: бэггинг, случайный лес

Reading time28 min
Views273K

Пятую статью курса мы посвятим простым методам композиции: бэггингу и случайному лесу. Вы узнаете, как можно получить распределение среднего по генеральной совокупности, если у нас есть информация только о небольшой ее части; посмотрим, как с помощью композиции алгоритмов уменьшить дисперсию и таким образом улучшить точность модели; разберём, что такое случайный лес, какие его параметры нужно «подкручивать» и как найти самый важный признак. Сконцентрируемся на практике, добавив «щепотку» математики.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.


Видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017).


Читать дальше →
Total votes 56: ↑55 and ↓1+54
Comments31

Предсказываем будущее с помощью библиотеки Facebook Prophet

Reading time10 min
Views106K

Прогнозирование временных рядов — это достаточно популярная аналитическая задача. Прогнозы используются, например, для понимания, сколько серверов понадобится online-сервису через год, каков будет спрос на каждый товар в гипермаркете, или для постановки целей и оценки работы команды (для этого можно построить baseline прогноз и сравнить фактическое значение с прогнозируемым).


Существует большое количество различных подходов для прогнозирования временных рядов, такие как ARIMA, ARCH, регрессионные модели, нейронные сети и т.д.


Сегодня же мы познакомимся с библиотекой для прогнозирования временных рядов Facebook Prophet (в переводе с английского, "пророк", выпущена в open-source 23-го февраля 2017 года), а также попробуем в жизненной задаче – прогнозировании числа постов на Хабрехабре.


Читать дальше →
Total votes 60: ↑58 and ↓2+56
Comments16

Открытый курс машинного обучения. Тема 4. Линейные модели классификации и регрессии

Reading time30 min
Views540K

Всем привет!


Сегодня мы детально обсудим очень важный класс моделей машинного обучения – линейных. Ключевое отличие нашей подачи материала от аналогичной в курсах эконометрики и статистики – это акцент на практическом применении линейных моделей в реальных задачах (хотя и математики тоже будет немало).


Пример такой задачи – это соревнование Kaggle Inclass по идентификации пользователя в Интернете по его последовательности переходов по сайтам.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.


Все материалы доступны на GitHub.
А вот видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017). В ней, в частности, рассмотрены два бенчмарка соревнования, полученные с помощью логистической регрессии.

Читать дальше →
Total votes 56: ↑53 and ↓3+50
Comments42

Библиотеки для глубокого обучения Theano/Lasagne

Reading time14 min
Views45K

Привет, Хабр!


Параллельно с публикациями статей открытого курса по машинному обучению мы решили запустить ещё одну серию — о работе с популярными фреймворками для нейронных сетей и глубокого обучения.


Я открою этот цикл статьёй о Theano — библиотеке, которая используется для разработки систем машинного обучения как сама по себе, так и в качестве вычислительного бекэнда для более высокоуровневых библиотек, например, Lasagne, Keras или Blocks.


Theano разрабатывается с 2007 года главным образом группой MILA из Университета Монреаля и названа в честь древнегреческой женщины-философа и математика Феано (предположительно изображена на картинке). Основными принципами являются: интеграция с numpy, прозрачное использование различных вычислительных устройств (главным образом GPU), динамическая генерация оптимизированного С-кода.

Читать дальше →
Total votes 53: ↑53 and ↓0+53
Comments11

No free lunch. Введение в участие в соревнованиях по анализу данных на платформе Kaggle

Reading time14 min
Views14K
Цель статьи — познакомить широкую аудиторию с соревнованиями по анализу данных на Kaggle. Я расскажу о своем подходе к участию на примере Outbrain click prediction соревнования, в котором я принимал участие и занял 4ое место из 979 команд, закончив первым из выступающих в одиночку.

Для понимания материала желательны знания о машинном обучении, но не обязательны.
Читать дальше →
Total votes 34: ↑29 and ↓5+24
Comments10

Открытый курс машинного обучения. Тема 3. Классификация, деревья решений и метод ближайших соседей

Reading time33 min
Views516K

Привет всем, кто проходит курс машинного обучения на Хабре!


В первых двух частях (1, 2) мы попрактиковались в первичном анализе данных с Pandas и в построении картинок, позволяющих делать выводы по данным. Сегодня наконец перейдем к машинному обучению. Поговорим о задачах машинного обучения и рассмотрим 2 простых подхода – деревья решений и метод ближайших соседей. Также обсудим, как с помощью кросс-валидации выбирать модель для конкретных данных.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.

Читать дальше →
Total votes 63: ↑62 and ↓1+61
Comments50

Погиб Крис Касперски. Памяти настоящего хакера посвящается

Reading time7 min
Views139K

Крис Касперски на RSA Conference 2015. Источник: хакер.ру

Говорят, что незаменимых людей нет. По большей части это действительно так, но есть и исключения. Например, если говорить о Николае Лихачеве, которого весь мир знает, как Криса Касперски, то здесь утверждение о незаменимости дает сбой. В ИТ-сфере этот человек сделал очень многое, о чем можно судить хотя бы по печатному «наследию»: Касперски оставил после себя больше 20 книг и 500 статей. Он был настоящим хакером, в изначальном понимании этого слова. То есть человеком, который прекрасно разбирался в том, как и что работает в ИТ.

Собственно, информационными технологиями он стал заниматься очень рано — с начальных классов, сразу после появления первого компьютера, который носил гордое название «Правец 8Д». По сути, это клон британского компьютера Oric Atmos, причем инструкция была на болгарском языке. Тем не менее, Крис (тогда еще Николай) быстро со всем освоился, написав свою первую игру. В ней пользователь должен был поймать рыбку. Графики здесь не было, ее роль играли символы. В центре экрана находился рыбак в виде знака вопроса, а рыбка отображалась при помощи нолика и знака «больше». Ловить рыбу нужно было, нажимая на пробел.
Total votes 162: ↑158 and ↓4+154
Comments323

Открытый курс машинного обучения. Тема 2: Визуализация данных c Python

Reading time15 min
Views428K

Второе занятие посвящено визуализации данных в Python. Сначала мы посмотрим на основные методы библиотек Seaborn и Plotly, затем поанализируем знакомый нам по первой статье набор данных по оттоку клиентов телеком-оператора и подглядим в n-мерное пространство с помощью алгоритма t-SNE. Есть и видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017).


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.


Сейчас статья уже будет существенно длиннее. Готовы? Поехали!

Читать дальше →
Total votes 52: ↑52 and ↓0+52
Comments45

Открытый курс машинного обучения. Тема 1. Первичный анализ данных с Pandas

Level of difficultyEasy
Reading time15 min
Views1.1M


Открытый курс машинного обучения mlcourse.ai сообщества OpenDataScience – это сбалансированный по теории и практике курс, дающий как знания, так и навыки (необходимые, но не достаточные) машинного обучения уровня Junior Data Scientist. Нечасто встретите и подробное описание математики, стоящей за используемыми алгоритмами, и соревнования Kaggle Inclass, и примеры бизнес-применения машинного обучения в одном курсе. С 2017 по 2019 годы Юрий Кашницкий yorko и большая команда ODS проводили живые запуски курса дважды в год – с домашними заданиями, соревнованиями и общим рейтингом учаcтников (имена героев запечатлены тут). Сейчас курс в режиме самостоятельного прохождения.

Читать дальше →
Total votes 44: ↑43 and ↓1+42
Comments61
1
23 ...

Information

Rating
Does not participate
Location
Россия
Date of birth
Registered
Activity