Всегда приятно решить задачу. Но еще интереснее ее придумать. Например такую.
Кроме обычной, есть «необычная» система умножения. Вот несколько примеров из этой системы.
Вопрос. Чему равно в «необычной» системе умножения?
Задача имеет однозначное решение в десятичной системе исчисления.Не уверен, что эти равенства встречаются каждый день. Но многие их получали. И это именно умножение.
В одной компании кандидатам на вакансию программиста какое-то время предлагалась следующая задача. Найти значение дроби:
Для решения данной задачи не требуется знания природы таких дробей и области, в которой эти дроби применяются. Нужно только заметить, что предложенное выражение самоподобно и может быть представлено в виде: А это, в свою очередь, приводит к обычному квадратному уравнению:
Рассмотрим следующую задачу. Найти период дроби 1/81. Уверяю, что для решения не потребуется ни калькулятор, ни деление столбиком. Для начала вспомним чему равно 81*(Период). Пусть длина периода n, тогда исходная дробь запишется как:
Александр Иванович Корейко, один из ничтожнейших служащих ГЕРКУЛЕС’а, был человек в последнем приступе молодости, ему было 38 лет. На красном сургучном лице сидели желтые пшеничные брови и белые глаза. Английские усики цветом даже походили на созревший злак. Лицо его казалось бы совсем молодым, если бы не грубые ефрейторские складки, пересекавшие щеки и шею. На службе Александр Иванович вел себя как сверхсрочный солдат: не рассуждал, был исполнителен, трудолюбив, искателен и туповат.
— Робкий он какой-то, — говорил о нем начальник финсчета, — какой-то уж слишком приниженный, преданный какой-то чересчур. Только объявят подписку на заем, как он уже лезет со своим месячным окладом. Первым подписывается. А весь оклад-то 46 рублей. Хотел бы я знать, как он существует на эти деньги.
Была у Александра Ивановича удивительная особенность. Он мгновенно умножал и делил в уме большие трехзначные и четырехзначные числа. Но это не освободило Александра Ивановича от репутации туповатого парня.
— Слушай, Александр Иванович, — спрашивал сосед, — сколько будет 836 на 423?
(«Золотой теленок», Илья Ильф, Евгений Петров )
В замечательной книге «Вы, конечно, шутите, мистер Фейнман!» есть эпизод, который привел меня к небольшой практической работе, что и послужило основой для создания данной статьи. А началось все с этого момента:
” Пол проходит по столовой, где все просто стоят на ушах. “Эй, Пол! – кричат они. – Фейнман – просто супер! Мы даем ему задачу, которую можно сформулировать за десять секунд, и он за одну минуту дает ответ с точностью до 10 процентов. Дай ему какую-нибудь задачу!” Почти не останавливаясь, он говорит: “Тангенс 10 градусов в сотой степени”. Я влип: для этого нужно делить на число пи до ста десятичных разрядов! Это было безнадежно!”.