Pull to refresh
0
0
Send message

10 научных статей о реставрации с помощью глубокого обучения, которые должен прочитать каждый

Reading time12 min
Views6.4K
В скором времени у нас стартует новый поток продвинутого курса «Machine Learning Pro + Deep Learning», а сегодня мы делимся постом, в котором рассказывается о подходах к реставрации с помощью глубокого обучения. Реставрация изображений в разрезе глубокого обучения — это задача заполнения потерянных пикселей так, чтобы итоговое изображение выглядело реалистично и соответствовало оригинальному контексту. Некоторые приложения метода, такие как удаление нежелательных объектов и интерактивное редактирование изображений, показаны на кдпв. Приложений на самом деле так много, как вы только можете себе представить.
Приятного чтения!

Лицевые анимации из двумерных видео

Reading time5 min
Views3K

Лицевые анимации - часть общей анимации модели, описывающая движения частей лица модели. Хотя развитие компьютерной графики методов лицевой анимации началось в начале 1970-х годов, основные достижения в этой области являются более поздними и произошло с конца 1980 - х годов. Однако по сей день, существующие способы анимации не являются совершенными и часто требуют дополнительных конструкций или маркеров для достижения необходимого качества анимации.

Давайте попробуем собрать что-нибудь на колене так, чтобы оно ещё и ожило. Статья о том, как я лицевые анимации костылил, что из этого вышло или не вышло.

Почитать о провале

Ваш pet-project будет доволен. Как вдохнуть жизнь в свои наработки

Reading time4 min
Views10K

Pet project


Всем привет! Как и многие, я люблю поковыряться с каким-либо хобби-проектом, — и удовольствие получаешь и показать при случае можно, а если он способен ещё и пользу кому-то принести, то это вдвойне приятно.


В этой статье я хочу поделиться, как наработки, оставшиеся после соревнования на машинный перевод, вылились в интересный проект и как сотрудничество с Национальным корпусом русского языка вдохнуло в него новую жизнь.

Чего не видит беспилотный автомобиль: анализ сырых видеоданных

Reading time12 min
Views4K
image

Могут ли современные системы беспилотной езды обнаруживать и распознавать окружающие объекты, а затем предсказывать их поведение? Могут ли они понимать значение спонтанных событий и действовать безопасно и решительно (как водитель-человек)?

Это вопрос на 64 миллиарда долларов, на который ни у кого из нас пока нет ответа.

Впрочем, это не значит, что нет никаких зацепок. Многие технологические компании, компании занимающиеся беспилотным транспортом и многие стартапы демонстрируют уровень готовности своего ПО для беспилотной езды с помощью публикации видеоматериалов о городских поездках их беспилотных автомобилей. Проблема этих роликов в том, что зачастую они либо смонтированы, либо ускорены. В описании этих видео приводятся города, в которых велась съемка, но не упоминаются время суток и день недели, когда был снят ролик.

Intel и Mobileye выделяются на фоне других технологических компаний и компаний, занимающихся беспилотным транспортом. Mobileye опубликовала два неотредактированных ролика – один был представлен в январе на Consumer Electronics Show, а другой выложен в сеть в мае. Ключевое слово – «неотредактированных» (видео представлены ниже).

Оба ролика были сняты на оживленных улицах Иерусалима. Более того, в каждом видео представлены три видеокомпонента: видеозапись с дрона, видео от лица водителя (показывает действия системы и вид на улицу) и ПО для визуализации, которое отображает то, что видит система восприятия автомобиля;

Умная нормализация данных

Reading time8 min
Views125K

Эта статья появилась по нескольким причинам.


Во-первых, в подавляющем большинстве книг, интернет-ресурсов и уроков по Data Science нюансы, изъяны разных типов нормализации данных и их причины либо не рассматриваются вообще, либо упоминаются лишь мельком и без раскрытия сути.


Во-вторых, имеет место «слепое» использование, например, стандартизации для наборов с большим количеством признаков — “чтобы для всех одинаково”. Особенно у новичков (сам был таким же). На первый взгляд ничего страшного. Но при детальном рассмотрении может выясниться, что какие-то признаки были неосознанно поставлены в привилегированное положение и стали влиять на результат значительно сильнее, чем должны.


И, в-третьих, мне всегда хотелось получить универсальный метод учитывающий проблемные места.


Читать дальше →

Вдохновляющие портфолио Data Science

Reading time6 min
Views12K
image

Data Science — сложная область знания. Она в равной степени сочетает в себе математику и статистику, информатику и черную магию. С середины 2020 года Data Science быстро растет, многочисленные соискатели роятся над каждым объявлением о приеме на работу. Кроме того, бушующая пандемия, в дополнение ко всему, тянет вниз.

Старания в получении списка сертификатов об окончании курсов не продвинут вас далеко, если только у вас нет добросовестно заслуженных дипломов магистра или PhD (кандидата наук). Сертификаты массовых открытых онлайн-курсов, таких как на Coursera или eDx, хороши, но у меня нет свидетельств их большой значимости. Kaggle тоже уже не тот: его открытые соревнования — кладбище переобученных моделей, а настоящие соревнования выигрывают команды, с которыми трудно соревноваться, более того, такие соревнования в любом случае ограничены в смысле личного портфолио.

Выход всё же есть — делать собственные интересные проекты и из них собирать портфолио, которое выгодно представит вас. В данном материале представлены вдохновляющие примеры таких портфолио. Используйте их для улучшения вашего собственного портфолио Data Science, изучения новых навыков или чтобы открыть для себя интересные проекты.
Приятного чтения!

Что читать специалисту по Data Science в 2020 году

Reading time6 min
Views5.7K

В этом посте делимся с вами подборкой источников полезной информации о Data Science от сооснователя и CTO DAGsHub — сообщества и веб-платформы для контроля версий данных и совместной работы дата-сайентистов и инженеров по машинному обучению. В подборку попали самые разные источники, от аккаунтов в твиттере, до полноценных инженерных блогов, которые ориентированы для тех, кто точно знает, что ищет. Подробности под катом.
Приятного чтения!

Как сделать интерактивную карту с помощью Python и open source библиотек

Reading time6 min
Views54K

Сегодня делимся с вами пошаговым руководством создания интерактивных карт для веб-приложения или блога. Просто сохраните эту статью в закладках. Хоть и существует, например, библиотека d3.js, которая может создавать пользовательские карты, есть несколько инструментов еще проще. В этом посте посмотрим на три простые в обращении, но мощные библиотеки Python с открытым исходным кодом и поработаем с ними.
Читать дальше →

Добавляем в плеер функцию Ambilight при помощи умных ламп Xiaomi

Reading time11 min
Views19K


Всем привет!
Думаю многие, интересующиеся умным домом или просто технологичным обустройством своего жилища, задумывались об «атмосферной» и нестандартной осветительной системе.

Один из способов такого «необычного» освещения комнаты во время просмотра фильмов предлагает компания Philips с технологией Ambilight, встроенной в особо навороченные телевизоры этого бренда.

В этой статье вы обнаружите реализацию подсветки Ambilight с помощью умных ламп Yeelight от Xiaomi!

Как выбрать красивые цвета для вашей инфографики

Reading time10 min
Views41K


Очень трудно выбрать хорошие цвета для инфографики. Постараемся разобраться с этой проблемой.

Прочитав эту статью, вы почувствуете себя более уверенно в выборе цвета. А если у вас вообще нет чувства цвета, то это просто рекомендации по хорошим сочетаниям. Поговорим о распространённых цветовых ошибках, которые нас окружают повсеместно, и как их избежать.

Статья не поможет найти хорошие градиенты или оттенки. Она предназначена для подбора красивых, чётких цветов для различных категорий информации (например, континентов, отраслей промышленности, видов птиц) в линейных, круговых, полосковых диаграммах и так далее.

20 самых популярных блогов и новостных сайтов по компьютерному зрению в 2020 г

Reading time6 min
Views3.6K
Всем привет. В преддверии старта курса «Компьютерное зрение» подготовили для вас полезный перевод.




Читать дальше →

TensorRT 6.x.x.x — высокопроизводительный инференс для моделей глубокого обучения (Object Detection и Segmentation)

Reading time9 min
Views25K
image
Больно только в первый раз!

Всем привет! Дорогие друзья, в этой статье я хочу поделиться своим опытом использования TensorRT, RetinaNet на базе репозитория github.com/aidonchuk/retinanet-examples (это форк официальной репы от nvidia, который позволит начать использовать в продакшен оптимизированные модели в кратчайшие сроки). Пролистывая сообщения в каналах сообщества ods.ai, я сталкиваюсь с вопросами по использованию TensorRT, и в основном вопросы повторяются, поэтому я решил написать как можно более полное руководство по использованию быстрого инференса на основе TensorRT, RetinaNet, Unet и docker.
Читать дальше →

Заметки Дата Сайентиста: персональный обзор языков запросов к данным

Reading time9 min
Views13K

Рассказываю из личного опыта, что где и когда пригодилось. Обзорно и тезисно, чтобы понятно было, что и куда можно копать дальше — но тут у меня исключительно субъективный личный опыт, у вас, может быть, все совсем по-другому.

Почему важно знать и уметь обращаться с языками запросов? По своей сути в Data Science есть несколько важнейших этапов работы и самый первый и важнейший (без него уж точно ничего работать не будет!) — это получение или извлечение данных. Чаще всего данные в каком-то виде где-то сидят и их нужно оттуда «достать». 

Языки запросов как раз и позволяют эти самые данные извлечь! И сегодня я расскажу, о тех языках запросов, которые мне пригодились и расскажу-покажу, где и как именно — зачем оно нужно для изучения.

Всего будет три основных блока типов запросов к данным, которые мы разберем в данной статье:

  • «Стандартные» языки запросов — то, что обычно понимают, когда говорят о языке запросов, как, например, реляционная алгебра или SQL.
  • Скриптовые языки запросов: например, питоновские штучки pandas, numpy или shell scripting.
  • Языки запросов к графам знаний и графовым базам данных.

Все написанное здесь — это просто персональный опыт, что пригодилось, с описанием ситуаций и «зачем оно было нужно» — каждый может примерить, насколько подобные ситуации могут встретиться вам и попробовать подготовиться к ним заранее, разобравшись с этими языками до того, как придется их в (срочном порядке) применять на проекте или вообще попасть на проект, где они нужны.
Читать дальше →

Склеиваем несколько фотографий в одну длинную с помощью компьютерного зрения

Reading time4 min
Views27K
В предыдущих статьях был описан шеститочечный метод разворачивания этикеток и как мы тренировали нейронную сеть. В этой статье описано, как склеить фрагменты, сделанные из разных ракурсов, в одну длинную картинку.
Читать дальше →

Чтение на выходные: три книги о корпоративных сетях

Reading time2 min
Views8.9K
Это компактный дайджест с литературой о настройке сетевой инфраструктуры и политик безопасности. Мы выбрали книги, часто упоминаемые на Hacker News и других тематических площадках об управлении ресурсами сетей, настройке и защите облачной инфраструктуры.

Читать дальше →

Профессиональное применение инструментов разработчика Chrome: 13 советов

Reading time7 min
Views34K
Автор статьи, перевод которой мы сегодня публикуем, хочет поделиться советами по профессиональной работе с инструментами разработчика браузера. А именно, эти советы рассчитаны на программистов, которые по какой-то причине решили, что их основным браузером будет Google Chrome.


Читать дальше →

Блиц-проверка алгоритмов машинного обучения: скорми свой набор данных библиотеке scikit-learn

Reading time21 min
Views25K
image

Глобальная паутина изо дня в день пополняется статьями о популярных, наиболее употребляемых алгоритмах машинного обучения для решения различных задач. Причём основа этих статей, немного изменённая по форме в том или ином месте, кочует от одного исследователя данных к другому. При этом все эти работы объединяет один общепринятый, непреложный постулат: применение того или иного алгоритма машинного обучения зависит от размера и природы имеющихся в распоряжении данных и поставленной задачи.

Вдобавок к этому особо настоявшиеся исследователи данных, делясь своим опытом, подчёркивают: «Выбор метода оценки должен частично зависеть от ваших данных и от того, в чём, по вашему мнению, модель должна быть хороша» («Data Science: инсайдерская информация для новичков. Включая язык R», авторы Кэти О’Нил, Рэйчел Шатт).
Читать дальше →

Sktime: унифицированная библиотека Python для машинного обучения и работы с временными рядами

Reading time7 min
Views15K
Всем привет. В преддверии старта базового и продвинутого курсов «Математика для Data Science», мы подготовили перевод еще одного интересного материала.






Решение задач из области data science на Python – это непросто


Почему? Существующие инструменты плохо подходят для решения задач, связанных с временными рядами и эти инструменты сложно интегрировать друг с другом. Методы пакета scikit-learn предполагают, что данные структурированы в табличном формате и каждый столбец состоит из независимых и одинаково распределенных случайных величин – предположений, которые не имеют ничего общего с данными временных рядов. Пакеты, в которых есть модули для машинного обучения и работы с временными рядами, такие как statsmodels, не особо хорошо дружат между собой. Более того, множество важных операций с временными рядами, такие как разбиение данных на обучающий и тестовый наборы по временным промежуткам, в существующих пакетах недоступны.

Для решения подобных задач и была создана sktime.
Читать дальше →

Продвинутый уровень визуализации данных для Data Science на Python

Reading time7 min
Views55K
Как сделать крутые, полностью интерактивные графики с помощью одной строки Python

image

Когнитивное искажение о невозвратных затратах (sunk cost fallacy) является одним из многих вредных когнитивных предубеждений, жертвой которых становятся люди. Это относится к нашей тенденции продолжать посвящать время и ресурсы проигранному делу, потому что мы уже потратили — утонули — так много времени в погоне. Заблуждение о заниженной стоимости применимо к тому, чтобы оставаться на плохой работе дольше, чем мы должны, рабски работать над проектом, даже когда ясно, что он не будет работать, и да, продолжать использовать утомительную, устаревшую библиотеку построения графиков — matplotlib — когда существуют более эффективные, интерактивные и более привлекательные альтернативы.

За последние несколько месяцев я понял, что единственная причина, по которой я использую matplotlib, — это сотни часов, которые я потратил на изучение сложного синтаксиса. Эти сложности приводят к часам разочарования, выясняя на StackOverflow, как форматировать даты или добавить вторую ось Y. К счастью, это прекрасное время для построения графиков в Python, и после изучения вариантов, явным победителем — с точки зрения простоты использования, документации и функциональности — является библиотека plotly. В этой статье мы погрузимся прямо в plotly, изучая, как создавать лучшие графики за меньшее время — часто с помощью одной строки кода.
Читать дальше →

Учимся читать научные статьи у Эндрю Ына из Стэнфорда

Reading time6 min
Views18K

Мудрость является не продуктом обучения, а пожизненной попыткой ее приобрести.

Альберт Эйнштейн

Каждому, кто серьёзно занимается машинным обучением, необходимо научиться понимать то, что публикуется в научных статьях. Подобные публикации делают учёные, находящиеся на переднем крае исследований в соответствующих областях. Это — искусственный интеллект (AI, Artificial Intelligence), машинное обучение (ML, Machine Learning), глубокое обучение (DL, Deep Learning) и многие другие сферы.



Для того чтобы оставаться в курсе последних открытий и расширять собственные знания, нужно обладать научным складом мышления и соответствующими привычками. Технологии AI, ML и DL развиваются с невероятной скоростью. Поэтому нам нужно, чтобы не отставать от прогресса, запастись соответствующими знаниями. Эти знания можно получить только в ходе работы с научными публикациями.

Здесь вы найдёте руководство по эффективной работе с научными статьями. В частности, мы остановимся на следующих темах:

  • Систематический подход к чтению подборок публикаций для получения знаний в интересующей вас области.
  • Правила чтения научных статей.
  • Полезные интернет-ресурсы, которые могут помочь вам в поиске публикаций и важнейшей информации.
Читать дальше →

Information

Rating
Does not participate
Registered
Activity