• LSTM – сети долгой краткосрочной памяти

    • Translation

    Рекуррентные нейронные сети


    Люди не начинают думать с чистого листа каждую секунду. Читая этот пост, вы понимаете каждое слово, основываясь на понимании предыдущего слова. Мы не выбрасываем из головы все и не начинаем думать с нуля. Наши мысли обладают постоянством.

    Традиционные нейронные сети не обладают этим свойством, и в этом их главный недостаток. Представим, например, что мы хотим классифицировать события, происходящие в фильме. Непонятно, как традиционная нейронная сеть могла бы использовать рассуждения о предыдущих событиях фильма, чтобы получить информацию о последующих.

    Решить эту проблемы помогают рекуррентые нейронные сети (Recurrent Neural Networks, RNN). Это сети, содержащие обратные связи и позволяющие сохранять информацию.
    Читать дальше →
    • +37
    • 71k
    • 2
  • Dropout — метод решения проблемы переобучения в нейронных сетях

    • Translation


    Переобучение (overfitting) — одна из проблем глубоких нейронных сетей (Deep Neural Networks, DNN), состоящая в следующем: модель хорошо объясняет только примеры из обучающей выборки, адаптируясь к обучающим примерам, вместо того чтобы учиться классифицировать примеры, не участвовавшие в обучении (теряя способность к обобщению). За последние годы было предложено множество решений проблемы переобучения, но одно из них превзошло все остальные, благодаря своей простоте и прекрасным практическим результатам; это решение — Dropout (в русскоязычных источниках — “метод прореживания”, “метод исключения” или просто “дропаут”).
    Читать дальше →
    • +16
    • 27.2k
    • 4
  • Обзор исследований в области глубокого обучения: обработка естественных языков

    • Translation


    Это третья статья из серии “Обзор исследований в области глубокого обучения” (Deep Learning Research Review) студента Калифорнийского университета в Лос-Анджелесе Адита Дешпанда (Adit Deshpande). Каждые две недели Адит публикует обзор и толкование исследований в определенной области глубинного обучения. В этот раз он сосредоточил свое внимание на применении глубокого обучения для обработки текстов на естественном языке.
    Читать дальше →
    • +23
    • 20.2k
    • 2
  • О том, как в Instagram отключили сборщик мусора Python и начали жить

    • Translation
    Отключив сборщик мусора Python (GC), который освобождает память, отслеживая и удаляя неиспользуемые данные, Instagram стал работать на 10% быстрее. Да-да, вы не ослышались! Отключив сборщик мусора, можно сократить объем потребляемой памяти и повысить эффективность работы кэша процессора. Хотите узнать, почему так происходит? Тогда пристегните ремни!

    Читать дальше →
  • Алгоритм Джонкера-Волгенанта + t-SNE = супер-сила

    • Translation
    До:



    После:



    Заинтригованы? Но обо всем по порядку.

    t-SNE


    t-SNE — это очень популярный алгоритм, который позволяет снижать размерность ваших данных, чтобы их было проще визуализировать. Этот алгоритм может свернуть сотни измерений к всего двум, сохраняя при этом важные отношения между данными: чем ближе объекты располагаются в исходном пространстве, тем меньше расстояние между этими объектами в пространстве сокращенной размерности. t-SNE неплохо работает на маленьких и средних реальных наборах данных и не требует большого количества настроек гиперпараметров. Другими словами, если взять 100 000 точек и пропустить их через эту волшебный черный ящик, на выходе мы получим красивый график рассеяния.
    Читать дальше →
    • +63
    • 28.5k
    • 2
  • Библиотека Google Benchmark

    • Translation


    Не так давно я писал о C++ библиотеках для микробенчмаркинга. Я рассказал о трех библиотеках: Nonius, Hayai и Celero. Но в действительности я хотел поговорить о четвертой. Мой Windows тогда не поддерживал Google Benchmark library, так что я не мог ее протестировать. К счастью, из комментариев к прошлому посту я узнал, что теперь библиотека доступна в Visual Studio!

    Давайте посмотрим, как можно ее использовать.
    Читать дальше →
  • Поиск по регулярным выражениям с помощью суффиксного массива

    • Translation
    image

    Еще в январе 2012 Расс Кокс опубликовал замечательный блог-пост, объясняющий работу Google Code Search с помощью триграммного индекса.

    К этому времени уже вышли первые версии моей собственной системы поиска по исходному коду под названием livegrep, с другим метод индексации; я писал эту систему независимо от Google, с помощью нескольких друзей. В этой статье я хотел бы представить немного запоздалое объяснение механизма ее работы.
    Читать дальше →
    • +19
    • 8.6k
    • 1
  • Что такое Resizable Concurrent Map

    • Translation
    В одном из прежних постов я рассказывал, как реализовать «простейшую в мире lock-free хеш-таблицу» на C++. Она была настолько проста, что было невозможно удалять из нее записи или менять ее размерность. С тех пор прошло несколько лет, и не так давно я написал несколько многопоточных ассоциативных массивов без таких ограничений. Их можно найти в моем проекте Junction на GitHub.

    Junction содержит несколько многопоточных реализаций интерфейса map – даже «самая простая в мире» среди них, под названием ConcurrentMap_Crude. Для краткости будем называть ее Crude map. В этом посте я объясню разницу между Crude map и Linear map из библиотеки Junction. Linear — самый простой map в Junction, поддерживающий и изменение размера, и удаление.

    Можете ознакомиться с объяснением того, как работает Crude map, в первоначальном посте. Если коротко, то она основана на открытой адресации и линейном пробировании. Это значит, что она по сути является большим массивом ключей и значений, использующим линейный поиск. Во время добавления или поиска заданного ключа мы вычисляем хеш от ключа, чтобы определить, с какого места начать поиск. Добавление и поиск данных возможны в многопоточном режиме.


    Читать дальше →
    • +27
    • 9.8k
    • 5
  • Самая простая в мире lock-free хеш-таблица

    • Translation
    image

    Безблокировочная хеш-таблица — это медаль о двух сторонах. В некоторых случаях они позволяют достигать такой производительности, которой не получить другими способами. С другой стороны, они довольно сложны.
    Читать дальше →
    • +28
    • 17.6k
    • 4
  • Введение в lock-free программирование

    • Translation
    image

    В этом посте мы хотели бы еще раз поднять тему программирования без блокировок, сперва дав ему определение, а затем выделить из всего многообразия информации несколько ключевых положений. Мы покажем, как эти положения соотносятся между собой, с помощью блок-схем, а потом мы немного коснемся деталей. Минимальное требование к разработчику, постигающему lock-free, — умение писать правильный многопоточный код, используя мьютексы или другие высокоуровневые объекты синхронизации, например, семафоры или события.
    Читать дальше →
  • Как отлаживать модели машинного обучения

    • Translation
    image

    Я размышлял, в основном с точки зрения преподавателя, о том, как научить отлаживать модели машинного обучения. Лично мне кажется полезным рассмотреть модель с точки зрения ошибок разного рода: байесовская ошибка (насколько ошибочен лучший из возможных классификаторов), ошибка аппроксимации (что мы потеряем из-за ограничения класса гипотезы), ошибка оценки (связанная с ограниченной длиной выборки), ошибка оптимизации (что случится, если не найти глобальный оптимум для задачи оптимизации). Я понял, что полезно попытаться отнести ошибку к определенной области, а потом устранять недостатки в этой конкретной области.
    Читать дальше →
    • +14
    • 10.1k
    • 1
  • Разбор статистической языковой модели от Google — часть 1: векторное представление символов

    • Translation
    В этом году исследователи из Google Brain опубликовали статью под названием Exploring the Limits of Language Modeling (Исследование границ языкового моделирования), в которой была описана языковая модель, позволившая значительно снизить перплексию (с примерно 50 до 30) на словаре One Billion Word Benchmark.

    В этом посте мы расскажем про самый низкий уровень этой модели — представление символов.


    Читать дальше →
  • Статьи, лежащие в основе подхода Facebook к компьютерному зрению

    • Translation
    Знаете такую компанию — Facebook? Да-да, ту самую, у сайта которой 1,6 миллиардов пользователей. И если взять все посты-поздравления с днем рождения, ваши позорные детские фотографии (у меня они такие), того дальнего родственника, лайкающего каждый ваш статус, — и вот вам множество данных для анализа.

    С точки зрения анализа изображений Facebook весьма далеко продвинулся со сверточными нейронными сетями (Convolutional Neural Network, CNN). В августе подразделение Facebook по исследованиям в области искусственного интеллекта (Facebook AI Research, сокращенно FAIR) опубликовала блог-пост об алгоритмах компьютерного зрения, которые лежат в основе некоторых их алгоритмов сегментации изображений. В этом посте мы кратко изложим и разъясним три статьи, на которые ссылается этот блог.


    Читать дальше →
  • Особенности Jupyter Notebook, о которых вы (может быть) не слышали

    • Translation
    Jupyter Notebook – это крайне удобный инструмент для создания красивых аналитических отчетов, так как он позволяет хранить вместе код, изображения, комментарии, формулы и графики:



    Ниже мы расскажем о некоторых фишках, которые делают Jupyter очень крутым. О них можно прочитать и в других местах, но если специально не задаваться этим вопросом, то никогда и не прочитаешь.
    Читать дальше →
  • Глубокое обучение для новичков: тонкая настройка нейронной сети

    • Translation
    • Tutorial

    Введение


    Представляем третью (и последнюю) статью в серии, задуманной, чтобы помочь быстро разобраться в технологии глубокого обучения; мы будем двигаться от базовых принципов к нетривиальным особенностям с целью получить достойную производительность на двух наборах данных: MNIST (классификация рукописных цифр) и CIFAR-10 (классификация небольших изображений по десяти классам: самолет, автомобиль, птица, кошка, олень, собака, лягушка, лошадь, корабль и грузовик).
    Читать дальше →
    • +16
    • 59k
    • 1
  • Глубокое обучение для новичков: распознаем изображения с помощью сверточных сетей

    • Translation
    • Tutorial

    Введение


    Представляем вторую статью в серии, задуманной, чтобы помочь быстро разобраться в технологии глубокого обучения; мы будем двигаться от базовых принципов к нетривиальным особенностям с целью получить достойную производительность на двух наборах данных: MNIST (классификация рукописных цифр) и CIFAR-10 (классификация небольших изображений по десяти классам: самолет, автомобиль, птица, кошка, олень, собака, лягушка, лошадь, корабль и грузовик).


    Читать дальше →
  • Глубокое обучение для новичков: распознаем рукописные цифры

    • Translation
    • Tutorial

    Представляем первую статью в серии, задуманной, чтобы помочь быстро разобраться в технологии глубокого обучения; мы будем двигаться от базовых принципов к нетривиальным особенностям с целью получить достойную производительность на двух наборах данных: MNIST (классификация рукописных цифр) и CIFAR-10 (классификация небольших изображений по десяти классам: самолет, автомобиль, птица, кошка, олень, собака, лягушка, лошадь, корабль и грузовик).



    Читать дальше →
    • +31
    • 79.5k
    • 5