Pull to refresh
392.2
Karma
161.2
Rating
Мальцев Антон @ZlodeiBaal

Computer Vision, Machine Learning

  • Followers 520
  • Following 20

ComputerVision и стиль

Recognitor corporate blogAlgorithmsImage processingMachine learningArtificial Intelligence

Несколько месяцев назад я писал статью про тихую революцию в ComputerVision - про трансформеры. А сейчас я хочу поговорить про другую революцию в CV. Уже не такую тихую (статьи тут куда более известные). Рассказ будет про GAN'ы. Как ими сегодня умеют управлять, и что достигли. В первую очередь это StyleGan и его производные.
В последний год-полтора появилось много различных способов управлять GAN-сетями и улучшилось их качество. Ещё чуть чуть и… Что? Можно будет генерить фильмы по описанию? Игры? Нужно ли будет рисовать крутые текстуры, или их можно будет создать?Попробую показать куда дошла современная технология, и чего ожидать от GAN’ов.

Читать далее
Total votes 64: ↑64 and ↓0+64
Views8.1K
Comments 13

Western Digital стер данные с большинства пользовательских NAS

Data storageData storagesComputer hardwareData storaging

Если у вас есть любой NAS от WD - то его нужно немедленно отключить от сети. Обновление окирпичивающее NAS и удаляющиее все данные начало прилетать вчера, мне прилетело сегодня утром. Домашние NAS от WD продаются последние лет 10.
Точно зааффекчина вся live серия. Судя по комментариям на формах отдельные другие серии тоже пострадали.

Читать далее
Total votes 105: ↑101 and ↓4+97
Views69K
Comments 260

Тихая революция и новый дикий запад в ComputerVision

Recognitor corporate blogSystem Analysis and DesignAlgorithmsImage processingMachine learning

Казалось бы, революция с Computer Vision уже была. В 2012 году выстрелили алгоритмы основанные на сверточных нейронных сетях. Года с 2014 они дошли до продакшна, а года с 2016 заполонили все. Но, в конце 2020 года прошел новый виток. На этот раз не за 4 года, а за один. поговорим о Трансформерах в ComputerVision. В статье будет обзор новинок, которые появились в последний год.

Читать далее
Total votes 103: ↑103 and ↓0+103
Views20K
Comments 22

Edge платы для домашнего Computer Vision

Recognitor corporate blogImage processingMachine learningComputer hardwareDIY

Я люблю делать всякие странные штуки с Computer Vision. Назовем их “условно полезные девайсы”. Из того, что я выкладывал на Хабре, - рассказ про умную кормушку для птиц и камера для слежения за ребенком. По работе тоже примерно тем же самым занимаюсь. Так что люблю следить за актуальным рынком устройств которые подходят для ComputerVision. Свой прошлый обзор я делал полтора года назад. Что для Embedded - много. В этом я сосредоточусь на устройствах которые вышли недавно + на устройствах которые будут интересны для хоббийных проектов.

Читать далее
Total votes 38: ↑37 and ↓1+36
Views7.7K
Comments 14

Как запихать нейронку в кофеварку

Recognitor corporate blogSystem Analysis and DesignMachine learningDevOpsComputer hardware
Tutorial
Мир машинного обучения продолжает стремительно развиваться. Всего за год технология может стать мейнстримом, и разительно измениться, придя в повседневность.

За прошедший год-полтора, одной из таких технологий, стали фреймворки выполнения моделей машинного обучения. Не то, что их не было. Но, за этот год, те которые были — стали сильно проще, удобнее, мощнее.



В статье я попробую осветить всё что повылезало за последнее время. Чтобы вы, решив использовать нейронную сеть в очередном калькуляторе, знали куда смотреть.
Читать дальше →
Total votes 31: ↑31 and ↓0+31
Views13K
Comments 16

Одноглазый глубиномер

Recognitor corporate blogWorking with 3D-graphicsImage processingMachine learningAR and VR

Недавно вышла интересная статья от FaceBook о том как можно делать неплохой 3D с монокулярных камер. Статья не очень применимая на практике. Но по качеству картинки завораживает.
Посмотрев на это я решил сделать небольшой рассказ о том что в статье творится, куда современные технологии пришли, и что можно ждать от них на практике.

Далее много картинок
Total votes 40: ↑40 and ↓0+40
Views10K
Comments 11

RPi-няня

Recognitor corporate blogImage processingMachine learningArtificial IntelligenceDIY
Периодически меня подмывает сделать что-то странное. Очевидно бесполезную вещь, которая не оправдывает себя по объему вложенных средств, и через полгода после создания пылиться на полке. Но зато полностью оправдывает себя по количеству эмоций, полученному опыту и новым рассказам. На Хабре даже есть две моих статьи про такие эксперименты: Алкоорган и умная кормушка для птиц.

Что ж. Пришло время рассказать о новом эксперименте. Как собрал, что из этого вышло и как повторить.



К новому проекту меня подтолкнуло событие, в каком-то смысле, банальное — родился сын. Я заранее устроил себе отпуск на месяц. Но ребёнок оказался тихим — было свободное время. И спящий рядом деть.

Дома много разных embedded-железок для computer vision. В итоге решил сделать видео-няню. Но не такую унылую, которыми завалены все магазины. А что-то поумнее и поинтереснее.
Читать дальше →
Total votes 42: ↑40 and ↓2+38
Views11K
Comments 7

Самая сложная задача в Computer Vision

Recognitor corporate blogPythonImage processingMachine learningArtificial Intelligence
Tutorial
Среди всего многообразия задач Computer Vision есть одна, которая стоит особняком. К ней обычно стараются лишний раз не притрагиваться. И, если не дай бог работает, — не ворошить.
У неё нет общего решения. Практически для каждого применения существующие алгоритмы надо тюнинговать, переобучать, или судорожно копаться в куче матриц и дебрях логики.

Статья о том как делать трекинг. Где он используется, какие есть разновидности. Как сделать стабильное решение.
Читать дальше →
Total votes 127: ↑127 and ↓0+127
Views41K
Comments 42

Как объяснить роботу свою точку зрения

Recognitor corporate blogImage processingMachine learningRoboticsArtificial Intelligence
Когда-нибудь задумывались зачем сегодня нужны роботы? С детства мне казалось, что роботы стоят где-то на современных фабриках, что это где-то далеко от нас. Или в фантастике.
Но уже нет. Роботы на сегодня — это автоматизация любого рутинного процесса. Их могут ставить и на фермах, и в автомастерских.


Если раньше цена такой автоматизации была огромной, то сейчас она падает. Становятся доступны более сложные технологические манипуляции. Роборуки — это по сути такой универсальный манипулятор, который не нужно проектировать под каждую задачу, => снижение цены внедрения, ускорение внедрения (хотя роборука может быть дороже чем кусок конвейера, который делает аналогичную операцию).

Но роборука это лишь половина процесса. Вторая половина — научить роборуку думать. И тут до недавних пор ситуация была ужасная. Нет универсальных подходов, которые сможет настроить любой инженер. Надо нанимать программистов/разработчиков/математиков, чтобы они сформулировали проблему, попробовали сделать решение. Конечно, такая ситуация не могла существовать долго. Да и Computer Vision с глубоким обучением подвезли. Так что сейчас начинает появляться какая-то первичная автоматизация не только сторого повторяющихся процессов. Сегодня о ней и поговорим.
Читать дальше →
Total votes 16: ↑16 and ↓0+16
Views3.5K
Comments 2

Машинное зрение и медицина

Recognitor corporate blogImage processingMachine learningBiotechnologiesArtificial Intelligence
Прошло лет пять с того момента как нейронные сетки начали втыкать в каждую дырку. Есть масса примеров где всё работает почти идеально — биометрия, распознавание технической информации (номера, коды), классификация и поиск в массиве данных.

Есть области где всё хуже, но сейчас идёт большой прогресс — речь/распознавание текстов, переводы.



Но есть области загадочные. Вроде как и прогресс есть. И статьи регулярно выходят. Только вот до практического применения как-то особо и не доходит.

Давайте разберём то, как нейронные сеточки и машинное зрение работает в медицине.
Читать дальше →
Total votes 35: ↑35 and ↓0+35
Views9.1K
Comments 24

Ультимативное сравнение embedded платформ для AI

Recognitor corporate blogSystem Analysis and DesignImage processingMachine learningArtificial Intelligence
Нейронные сеточки захватывают мир. Они считают посетителей, контролируют качество, ведут статистику и оценивают безопасность. Куча стартапов, использование в промышленности.
Замечательные фреймворки. Что PyTorch, что второй TensorFlow. Всё становиться удобнее и удобнее, проще и проще…
Но есть одна тёмная сторона. Про неё стараются молчать. Там нет ничего радостного, только тьма и отчаяние. Каждый раз когда видишь позитивную статью — грустно вздыхаешь, так как понимаешь что просто человек что-то не понял. Или скрыл.
Давайте поговорим про продакшн на embedded-устройствах.

Читать дальше →
Total votes 43: ↑43 and ↓0+43
Views15K
Comments 54

Лопнул ли пузырь машинного обучения, или начало новой зари

Recognitor corporate blogImage processingMachine learningResearch and forecasts in ITArtificial Intelligence
Недавно вышла статья, которая неплохо показывает тенденцию в машинном обучении последних лет. Если коротко: число стартапов в области машинного обучения в последние два года резко упало.

image

Ну что. Разберём «лопнул ли пузырь», «как дальше жить» и поговорим откуда вообще такая загогулина.
Читать дальше →
Total votes 185: ↑181 and ↓4+177
Views108K
Comments 350

Краткий гайд по созданию оракулов, богов из машины и ошибкам второго рода

Recognitor corporate blogAlgorithmsImage processingMachine learning
Наверное, в этом тексте для многих не будет новизны. Наверное, другие скажут что такого не бывает в реальной жизни. Но, уже не первое апреля, а всё написанное тут — чистая правда, которая случалась со мной или с людьми вокруг. Возможно что-то из сказанного заставит вас переосмыслить окружающие вас феномены.

Если подходить к этим историям формально, то можно сказать что все они порождены тем что люди не учитывают ошибку второго рода. У Юдковского, с коим знакома четверть Хабра — эта ошибка обычно зовётся «Подтверждающее искажение».



Что это такое? В двух словах — «человек ищет подтверждение своей модели, а не её опровержение». Единственный шанс объяснить лучше, это примеры-примеры-примеры и опыт. Лишь так можно развить чувство что «что-то тут не так».

Мне кажется, что этот короткий рассказ позволит вам посмотреть на ошибки второго рода с совсем другой стороны. Со стороны того, как они уже вошли в нашу жизнь, влияют на практически каждое решение. И помогают нам делать богов из окружающих технологий. В машинном обучении я наталкиваюсь на это каждый день.
Читать дальше →
Total votes 73: ↑73 and ↓0+73
Views20K
Comments 18

Правда и ложь систем распознавания лиц

Recognitor corporate blogData MiningAlgorithmsImage processingMachine learning
Пожалуй нет ни одной другой технологии сегодня, вокруг которой было бы столько мифов, лжи и некомпетентности. Врут журналисты, рассказывающие о технологии, врут политики которые говорят о успешном внедрении, врут большинство продавцов технологий. Каждый месяц я вижу последствия того как люди пробуют внедрить распознавание лиц в системы которые не смогут с ним работать.



Тема этой статьи давным-давно наболела, но было всё как-то лень её писать. Много текста, который я уже раз двадцать повторял разным людям. Но, прочитав очередную пачку треша всё же решил что пора. Буду давать ссылку на эту статью.

Итак. В статье я отвечу на несколько простых вопросов:

  • Можно ли распознать вас на улице? И насколько автоматически/достоверно?
  • Позавчера писали, что в Московском метро задерживают преступников, а вчера писали что в Лондоне не могут. А ещё в Китае распознают всех-всех на улице. А тут говорят, что 28 конгрессменов США преступники. Или вот, поймали вора.
  • Кто сейчас выпускает решения распознавания по лицам в чём разница решений, особенности технологий?

Большая часть ответов будет доказательной, с сылкой на исследования где показаны ключевые параметры алгоритмов + с математикой расчёта. Малая часть будет базироваться на опыте внедрения и эксплуатации различных биометрических систем.

Я не буду вдаваться в подробности того как сейчас реализовано распознавание лиц. На Хабре есть много хороших статей на эту тему: а, б, с (их сильно больше, конечно, это всплывающие в памяти). Но всё же некоторые моменты, которые влияют на разные решения — я буду описывать. Так что прочтение хотя бы одной из статей выше — упростит понимание этой статьи. Начнём!
Читать дальше →
Total votes 85: ↑84 and ↓1+83
Views56K
Comments 79

Можно ли запихнуть распознавание номеров в любой тамагочи?

Recognitor corporate blogAlgorithmsImage processingMachine learning
Про распознавание номеров мы рассказываем на Хабре давным давно. Надеюсь даже интересно. Похоже настало время рассказать как это применяется, зачем это вообще нужно, куда это можно запихнуть. А самое главное — как это изменяется в последние годы с приходом новых алгоритмов машинного зрения.


Читать дальше →
Total votes 24: ↑24 and ↓0+24
Views17K
Comments 34

На пути к естественному интеллекту

JUG Ru Group corporate blogData MiningImage processingMachine learning
Machine Learning с каждым днём становится всё больше. Кажется, что любая компания, у которой есть хотя бы пять сотрудников, хочет себе разработать или купить решение на машинном обучении. Считать овец, считать свёклу, считать покупателей, считать товар. Либо прогнозировать всё то же самое.

image

Формула проста: если цена внедрения ниже, чем ты платишь охраннику — ставь управляемый шлагбаум. Потери от бездельников выше стоимости внедрения биометрической системы учёта времени — внедряй. «Эксперт» берёт взятки за контроль качества продукта? Продублируй его системой контроля качества.

Далеко не всегда можно оценить стоимость разработки. Но зачастую хватает даже порядка, чтобы начать работы и привлечь инвесторов.

Но статья, скорее, не про это. Статья про специалистов по машинному обучению. Про бум специальности, про то, какие люди начинают приходить, как из единого, общего массива специалистов начинают вырисовываться профессии, про то, как сейчас решать ML-задачи.
Читать дальше →
Total votes 51: ↑49 and ↓2+47
Views17K
Comments 18

Умная кормушка: Machine Learning, Raspberry Pi, Telegram, немножко магии обучения + инструкция по сборке

Instant MessagingOpen sourceAlgorithmsImage processingMachine learning
Tutorial
Всё началось с того, что жена захотела повесить кормушку для птиц. Идея мне понравилась, но сразу захотелось оптимизировать. Световой день зимой короткий — сидеть днём и смотреть на кормушку времени нет. Значит нужно больше Computer Vision!



Идея была простой: прилетает птичка — вжуууух — она оказывается на телефоне. Осталось придумать как это сделать и реализовать.
В статье:
  • Запуск Caffe на Raspberry Pi B+ (давно хотел это сделать)
  • Построение системы сбора данных
  • Выбор нейронной сети, оптимизация архитектуры, обучение
  • Оборачивание, выбор и приделывание интерфейса

Все исходники открыты + описан полный порядок развёртывания получившейся конструкции.
Читать дальше →
Total votes 73: ↑72 and ↓1+71
Views33K
Comments 58

Google Cloud Vision API‎. Будущее Computer Vision as a service настало?

System Analysis and DesignAlgorithmsImage processingGoogle APIMachine learning
Tutorial
Год назад Google сваял платформу Cloud Vision API‎. Идея платформы — предоставить технологии Computer Vision, в которых Google является безусловным лидером, как сервис. Пару лет назад под каждую задачу существовала своя технология. Нельзя было взять что-то общее и добиться, чтобы алгоритм решал всё. Но Google замахнулся. Вот, прошёл уже год. А технология всё так же не на слуху. На хабре одна статья. Да и та ещё не про Cloud Vision api, а про Face api, которое было предшественником. Англоязычный интернет тоже не пестрит статьями. Разве что от самого Google. Это провал?



Мне было интересно посмотреть что это такое ещё весной. Но сил полноценно посидеть не хватало. Изредка что-то отдельное тестировал. Периодически приходили заказчики и спрашивали, почему нельзя применить Cloud Api. Приходилось отвечать. Или наоборот, отсылать с порога в этом направлении. И внезапно понял, что материала на статью уже достаточно. Поехали.
Читать дальше →
Total votes 44: ↑41 and ↓3+38
Views31K
Comments 25

Почему супер-мега-про машинного обучения за 15 минут всё же не стать

Recognitor corporate blogAlgorithmsImage processingMachine learning
Tutorial
Вчера я опубликовал статью про машинное обучение и NVIDIA DIGITS. Как и обещал, сегодняшняя статья — почему всё не так уж и хорошо + пример выделения объектов в кадре на DIGITS.

NVIDIA подняла волну пиара по поводу разработанной и имплиментированной в DIGITS сетки DetectNet. Сетка позиционируется как решение для поиска одинаковых/похожих объектов на изображении.


Читать дальше →
Total votes 33: ↑30 and ↓3+27
Views28K
Comments 36

Как стать супер-мега-про машинного обучения за 15 минут

Image processingMachine learning
Tutorial
image

Недавно на Хабре проскакивал пост vfdev-5 о DIGITS. Давайте поподробнее разберёмся что это такое и с чём его едят. Если в двух словах. Это среда, которая позволяет решить 30-50% задачек машинного обучения на коленке в течении 5 минут. Без умения программировать. Ну, при наличии базы, конечно. И более-менее адекватной карточки от NVIDIA.
Читать дальше →
Total votes 55: ↑52 and ↓3+49
Views33K
Comments 25

Information

Rating
11-th
Location
Москва, Москва и Московская обл., Россия
Works in
Date of birth
Registered
Activity