Как стать автором
Обновить

50+ бесплатных курсов и ресурсов по аналитике данных от Harvard, Google, Stanford (по которым я училась)

Время на прочтение4 мин
Количество просмотров53K

Всем привет, меня зовут Маруся, я аналитик данных и на досуге веду телеграм-канал про аналитику.

Так как я сама изучала аналитику данных по бесплатным курсам, параллельно стажируясь, а потом уже и полноценно работая в компаниях, у меня накопилось много классных бесплатных курсов, которыми с вами тут и поделюсь.

Сейчас предлагают много платных программ, но если у вас есть интерес и вы можете себя организовать на учебу самостоятельно - то обучение по бесплатным курсам вам подойдет. Тем более что это обучение от лучших компаний и университетов мира - Harvard, IBM, Google, Stanford и других.

Я изучила полностью как минимум несколько курсов по аналитике данных, а также отдельно по Python, SQL, статистике, созданию дашбордов, веб-аналитике и т.д. Все это на том или ином этапе было нужно в моей работе. А также было много курсов, в которых я изучала только конкретные части (под конкретный интерес или конкретную задачу).

Но сначала 2 важных вещи:

Все курсы, представленные ниже только на английском. Почему на английском? Потому что материалов по аналитике данных и data science на русском не так много и практически все они сделаны каким-то действующим онлайн-университетом, а я не хотела бы в статье делать рекламу кому-то из них. Даже если вы не знаете английского, можно пользоваться переводчиком и изучать английский параллельно изучению курса. Поначалу трудно, но позже начинает получаться.

В моем телеграм-канале подписчица задала вопрос, нужны ли сертификаты, корочки при трудоустройстве на работу? Как оказалось, есть люди, которые проходят платные курсы только из-за сертификата.

Я не исследовала опыт других людей, но по своему могу сказать: я прошла очень много собеседований и нигде меня не спрашивали про физический сертификат или диплом. То же самое при непосредственном устройстве на работу - никто не требовал предоставлять дипломы или сертификаты. Максимум - это могут задать вопрос, типа "Какое обучение вы заканчивали?", "Какие курсы проходили?".

Далее даю общие курсы по аналитике данных и data science, а также курсы по отдельным навыкам, которые нужны для этих профессий.

Общие курсы

Общие курсы дают базовое понимание. У Google, IBM есть бесплатные курсы, заточенные больше под аналитику данных. У Harvard University - под data science.

Блоги компаний по аналитике

В блогах есть примеры решения конкретных задач и почитать на досуге опыт мировых лидеров всегда полезно.

SQL и базы данных

Из нижеперечисленных мне больше всего нравится Kaggle, не только тем, что там дается небольшая теория и потом практика, но и интерфейсом, простотой подачи материала.

А вообще свое мнение относительно того, как выучить SQL быстрее, сказала тут.

Python

Я сначала прошла базу языка, его азы, а затем уже изучала, как можно с помощью Python решить задачи аналитики, изучала отдельные библиотеки, которые используются в аналитике данных.

Тренажеры SQL и Python

Дополнительно, для "оттачивания" навыков и подготовки к собеседованиям могут пригодиться. Конечно, нет ничего лучше реальных задач, но иногда реальных нет. Когда у меня была такая ситуация, я прорешала задачи на Hakerrank и это помогло мне в дальнейшем пройти собеседование. Там же, например на Hakerrank, можно получить сертификаты для подтверждения своего уровня.

Статистика

Статистика - вещь, незнание которой может привести к ошибкам, чего я не понимала в самом начале. Поэтому рекомендую ее изучать всем аналитикам, даже если явно ее от вас и не требуют.

Визуализация

Вот несколько курсов по визуализации, которые дают азы, понимание базовых прицнипов. Но стоит также учитывать, с помощью какого именно инструмента вы хотите визуализировать (Power BI, Google Data studio, Python и тд). И как правило у каждого инструмента есть своя бесплатная обучающая база на их же сайте.

А/Б тестирование

По А/Б тестированию вообще мало материалов и все по большей части в каких-то статьях. Но вот 3 полноценных курса, которые я нашла.

Системы веб аналитики

Google имеет обучающий центр Skillshop, где можно обучиться старой версии Universal analytics (ее перестанут поддерживать в июне 2023 года) и новой версии Google Аналитика 4. Есть тестовый аккаунт для той и другой. Как получить тестовый аккаунт.

Google Tag manager - менеджер тегов.

Яндекс Метрика - “Школа Метрики”. И также тестовый аккаунт (чтобы в него войти, нужно зарегистрироваться в Метрике).

Если у вас есть интересные курсы, которые вы знаете или проходили - поделитесь, пожалуйста, в комментариях (только просьба делиться именно бесплатными курсами, без рекламы).

Только зарегистрированные пользователи могут участвовать в опросе. Войдите, пожалуйста.
Как учиться эффективнее?
73.68% По бесплатным материалам28
26.32% Купив платный курс10
Проголосовали 38 пользователей. Воздержались 14 пользователей.
Теги:
Хабы:
Всего голосов 11: ↑9 и ↓2+10
Комментарии5

Публикации