Как бы я изучал Data Science, если бы начал пару лет назад, или Руководство по эффективному изучению науки о данных

Обсуждаем вопросы сбора и подготовки данных
Мы уже рассказывали Хабру, что новая SmartData — это конференция про data engineering. Но что именно это значит на практике, какие доклады подходят под такое определение? На момент анонса мы могли объяснить только общими словами, а вот теперь программа конференции готова — так что показываем всю конкретику. Под катом — описания всех докладов.
А в преддверии конференции будет ещё и маленькое бесплатное онлайн-мероприятие о жизни дата-инженеров: 1 декабря на YouTube пройдёт разговорное шоу, где участники программного комитета конференции (Паша asm0dey Финкельштейн, Олег olegchir Чирухин, Дарья Буланова, Сергей Бойцов) обсудят свои проблемы и провалы — грубо говоря, как они тратили слишком много времени на решение простой задачи. Увидимся в YouTube-трансляции.
К нашей новой программе "Apache Spark на Scala для дата-инженеров" и вебинару о курсе, который пройдет 2 декабря, мы подготовили перевод обзорной статьи о Spark 3.0.
Spark 3.0 вышел с целым набором важных улучшений, среди которых: повышение производительности с помощью ADQ, чтение бинарных файлов, улучшенная поддержка SQL и Python, Python 3.0, интеграция с Hadoop 3, поддержка ACID.
В этой статье автор постарался привести примеры использования этих новых функций. Это первый первый материал о функциональности Spark 3.0 и у этой серии статей планируется продолжение.
Машинное обучение – распространившийся термин, но не все понимают его верно. В этом материале эксперты направления аналитических решений ГК «КОРУС Консалтинг» Алена Гайбатова и Екатерина Степанова расскажут, что же на самом деле такое machine learning (ML), в каких случаях эту технологию стоит использовать в проектах, а также где машинное обучение активно применяется на практике.
Criteo — это компания, работа которой основана на данных. Каждый день через наши системы проходят десятки терабайт новых данных для обучения моделей рекомендаций, обрабатывающих запросы в масштабах всего Интернета. Spark — наше основное средство обработки больших данных. Это мощный и гибкий инструмент, однако он отличается довольно высокой сложностью в освоении, а чтобы пользоваться им эффективно, зачастую требуется читать исходный код платформы.
Эта статья внеплановая. В прошлый раз я рассматривал нюансы и проблемы различных методов нормализации данных. И только после публикации понял, что не упомянул некоторые важные детали. Кому-то они покажутся очевидными, но, по-моему, лучше сказать об этом явно.
Delta Lake 0.4.0 включает Python API и преобразование Parquet в таблицу Delta Lake на месте
Мы рады объявить о релизе Delta Lake 0.4.0, в котором представлен Python API, улучшающий манипулирование и управление данными в Delta-таблицах. Ключевыми фичами этого релиза являются:
- Python API для DML и служебных операций (#89) - теперь вы можете использовать Python API для обновления(update)/удаления(delete)/слияния(merge) данных и выполнения служебных операций (а именно, vacuum и history) в таблицах Delta Lake. Они отлично подходят для создания сложных рабочих нагрузок в Python, например, операций медленно меняющихся измерений (SCD - Slowly Changing Dimension), слияния изменений данных для репликации и операций upsert из потоковых запросов. Для получения более подробной информации читайте документацию.
- Convert-to-Delta (#78) - теперь вы можете преобразовать таблицу Parquet в таблицу Delta Lake на месте без перезаписи каких-либо данных. Эта функция отлично подходит для преобразования очень больших таблиц Parquet, которые было бы довольно затратно перезаписывать в Delta-таблицу. Более того, этот процесс обратим - вы можете преобразовать таблицу Parquet в таблицу Delta Lake, поработать с ней (например, удалить или объединить) и легко преобразовать ее обратно в таблицу Parquet. Для получения более подробной информации читайте документацию.
- SQL для служебных операций - теперь вы можете использовать SQL для выполнения служебных операций vacuum и history. Смотрите документацию для получения дополнительных сведений о том, как настроить Spark для выполнения этих специфичных для Delta Lake команд SQL.
Больше информации вы можете найти в примечаниях к релизу Delta Lake 0.4.0 и в документации по Delta Lake > Удаление, обновление и слияние таблиц.
Эта статья появилась по нескольким причинам.
Во-первых, в подавляющем большинстве книг, интернет-ресурсов и уроков по Data Science нюансы, изъяны разных типов нормализации данных и их причины либо не рассматриваются вообще, либо упоминаются лишь мельком и без раскрытия сути.
Во-вторых, имеет место «слепое» использование, например, стандартизации для наборов с большим количеством признаков — “чтобы для всех одинаково”. Особенно у новичков (сам был таким же). На первый взгляд ничего страшного. Но при детальном рассмотрении может выясниться, что какие-то признаки были неосознанно поставлены в привилегированное положение и стали влиять на результат значительно сильнее, чем должны.
И, в-третьих, мне всегда хотелось получить универсальный метод учитывающий проблемные места.