NODE: Нейро-ансамбли решений с забыванием для глубокого обучения по табличным данным
Аннотация
В настоящее время глубокие нейронные сети (DNN) стали основным инструментом для решения задач машинного обучения в широком спектре областей, включая компьютерное зрение, НЛП и речевое общение. Между тем, в важном случае гетерогенных (неоднородных – как по типу, форме, так и по структуре) табличных данных преимущество DNN перед частными аналогами остается сомнительным. В частности, нет достаточных доказательств того, что механизмы глубокого обучения позволяют создавать методы, которые превосходят деревья решений с выбором по росту градиента (GBDT), которые часто являются лучшим выбором для табличных задач. В этой статье мы представляем ансамбли нейронных решений без внимания (NODE), новую архитектуру глубокого обучения, предназначенную для работы с любыми табличными данными. Кратко, предлагаемая архитектура NODE обобщает ансамбли деревьев решений с забыванием (без памяти), но извлекает выгоду как из сквозной оптимизации на основе градиентов, так и из возможностей многоуровневого обучения иерархическому представлению. Проведя обширное экспериментальное сравнение с ведущими пакетами GBDT на большом количестве табличных наборов данных, мы демонстрируем преимущество предлагаемой архитектуры NODE, которая превосходит конкурентов по большинству тестовых задач. Мы используем реализацию NODE с открытым исходным кодом PyTorch и считаем, что она станет универсальной платформой для машинного обучения на основе табличных данных.