Как стать автором
Поиск
Написать публикацию
Обновить
763.25

Машинное обучение *

Основа искусственного интеллекта

Сначала показывать
Порог рейтинга
Уровень сложности

Почему супер-мега-про машинного обучения за 15 минут всё же не стать

Время на прочтение6 мин
Количество просмотров29K
Вчера я опубликовал статью про машинное обучение и NVIDIA DIGITS. Как и обещал, сегодняшняя статья — почему всё не так уж и хорошо + пример выделения объектов в кадре на DIGITS.

NVIDIA подняла волну пиара по поводу разработанной и имплиментированной в DIGITS сетки DetectNet. Сетка позиционируется как решение для поиска одинаковых/похожих объектов на изображении.


Читать дальше →

Как стать супер-мега-про машинного обучения за 15 минут

Время на прочтение3 мин
Количество просмотров34K
image

Недавно на Хабре проскакивал пост vfdev-5 о DIGITS. Давайте поподробнее разберёмся что это такое и с чём его едят. Если в двух словах. Это среда, которая позволяет решить 30-50% задачек машинного обучения на коленке в течении 5 минут. Без умения программировать. Ну, при наличии базы, конечно. И более-менее адекватной карточки от NVIDIA.
Читать дальше →

Как сейчас используют нейросети: от научных проектов до развлекательных сервисов

Время на прочтение7 мин
Количество просмотров24K
В 1960-х годах появился новый подраздел информатики — искусственный интеллект (ИИ). Полвека спустя инженеры продолжают развивать обработку естественного языка и машинное обучение, чтобы оправдать надежды на появление сильного ИИ.

Мы в 1cloud пишем в блоге не только о себе [клиентоориентированность, безопасность], но и разбираем занимательные темы вроде ментальных моделей или систем хранения данных на основе ДНК.

Сегодня мы расскажем о том, как машинное обучение используется сейчас: почему нейронные сети популярны у физиков, как работают рекомендательные алгоритмы YouTube и поможет ли машинное обучение «перепрограммировать» наши болезни.


/ Zufzzi / Wikimedia / CC0
Читать дальше →

Как программист машину покупал. Часть II

Время на прочтение11 мин
Количество просмотров40K
В предыдущей статье на примере покупки Mercedes-Benz E-klasse не старше 2010 года выпуска стоимостью до 1.5 млн рублей в Москве была рассмотрена задача поиска выгодных автомобилей. Под выгодными следует понимать предложения, цена которых ниже рыночной в текущий момент среди объявлений, собранных со всех наиболее авторитетных сайтов по продаже б/у автомобилей в РФ.

На первом этапе в качестве метода машинного обучения была выбрана множественная линейная регрессия, были рассмотрены правомерность ее использования, а также плюсы и минусы. Простая линейная регрессия была выбрана в качестве ознакомительного алгоритма. Очевидно, что существует еще много методов машинного обучения для решения поставленной задачи регрессии. В этой статье я хотел бы рассказать вам, как именно я выбирал наиболее оптимальный алгоритм машинного обучения для исследуемой модели, который в настоящее время используется в реализованном мною сервисе — robasta.ru.


Читать дальше →

Колыбель для AI

Время на прочтение8 мин
Количество просмотров17K


Есть одна тема в современном Computer Vision, которая часто остаётся за кадром. В ней нет сложной математики и глубокой логики. Но то что её никак не освещают — вгоняет в ступор многих новичков. А тема не проста: имеет множество граблей, про которые не узнаешь, пока не наступишь.

Тема — называется так: подготовка базы изображений для дальнейшего обучения.
В статье:

  1. Как можно отличить хорошую базу
  2. Примеры хороших баз
  3. Примеры программ, которыми удобно размечать базы

Читать дальше →

Зачем нужен алгоритм Хо-Кашьяпа?

Время на прочтение4 мин
Количество просмотров19K
Недавно на Хабре появилась публикация про алгоритм Хо-Кашьяпа (Ho-Kashyap procedure, он же — алгоритм НСКО, наименьшей среднеквадратичной ошибки). Мне она показалась не очень понятной и я решил разобраться в теме сам. Выяснилось, что в русскоязычном интернете тема не очень хорошо разобрана, поэтому я решил оформить статью по итогам поисков.

Несмотря на бум нейросетей в машинном обучении, алгоритмы линейной классификации остаются гораздо более простыми в использовании и интерпретации. Но при этом иногда вовсе не хочется пользоваться сколько-нибудь продвинутыми методами, вроде метода опорных векторов или логистической регрессии и возникает искушение загнать все данные в одну большую линейную МНК-регрессию, тем более её прекрасно умеет строить даже MS Excel.

Проблема такого подхода в том, что даже если входные данные линейно разделимы, то получившийся классификатор может их не разделять. Например, для набора точек X = [(6, 9), (5, 7), (5, 9), (10, 1)], y = [1, 1, -1, -1] получим разделяющую прямую (0.15x_1 - 0.43x_2 + 3.21) = 0 (пример позаимствован из (1)):

Latex


Встаёт вопрос — можно ли как-то избавиться от этой особенности поведения?
Под катом немного теории и код на python

Логика сознания. Часть 8. Пространственные карты коры мозга

Время на прочтение27 мин
Количество просмотров24K

Задача настоящего цикла статей — попробовать описать как работает реальный мозг. Поэтому нас волнует не только работоспособность предлагаемых моделей, но и их согласованность с теми фактами, что известны про реальный мозг и реальные нейроны. В этой части пойдет разговор о том, насколько принципы пространственной организации, свойственные предлагаемой модели, соответсвуют тому, что известно про пространственную организацию реальной коры.

В свое время Вернон Маунткасл выдвинул гипотезу, что для мозга кортикальная колонка – это основная структурная единица переработки информации. В свете описываемой модели можно конкретизировать функции кортикальных миниколонок, механизмы их работы и принципы взаимодействия.

В предлагаемой модели мы исходим из того, что мозг оперирует информацией, которая состоит из дискретных понятий. Каждому понятию соответствует волна с определенным уникальным внутренним узором. Носителями волн, предположительно, являются дендритные сегменты. По узорам, которые создают информационные волны, распространяясь по какой-либо зоне коры, миниколонки этой зоны получает информационное описание происходящего. Одна и та же информация поступает в каждую миниколонку.
Читать дальше →

Поиск Яндекса с инженерной точки зрения. Лекция в Яндексе

Время на прочтение19 мин
Количество просмотров26K
Сегодня мы публикуем ещё один из докладов, прозвучавших на летней встрече об устройстве поиска Яндекса. Выступление руководителя отдела ранжирования Петра Попова получилось в тот день самым доступным для широкой аудитории: минимум формул, максимум общих понятий о поиске. Но интересно было всем, потому что Пётр несколько раз переходил к деталям и в итоге рассказал много такого, о чём Яндекс никогда раньше публично не заявлял.

Кстати, одновременно с публикацией этой расшифровки начинается вторая встреча из серии, посвящённой технологиям Яндекса. Сегодняшнее мероприятие — уже не про поиск, а про инфраструктуру. Вот ссылка на трансляцию.


Ну а под катом — лекция Петра Попова и часть слайдов.

Как собрать биграммы для корпуса любого размера на домашнем компьютере

Время на прочтение5 мин
Количество просмотров20K
В современной компьютерной лингвистике биграммы, или в общем случае n-граммы, являются важным статистическим инструментом. В статье мы расскажем с какими трудностями можно столкнуться при расчёте биграмм на большом корпусе текстов и приведём алгоритм, который можно использовать на любом домашнем компьютере.
Читать дальше →

Обзор топологий глубоких сверточных нейронных сетей

Время на прочтение18 мин
Количество просмотров111K
Это будет длиннопост. Я давно хотел написать этот обзор, но sim0nsays меня опередил, и я решил выждать момент, например как появятся результаты ImageNet’а. Вот момент настал, но имаджнет не преподнес никаких сюрпризов, кроме того, что на первом месте по классификации находятся китайские эфэсбэшники. Их модель в лучших традициях кэгла является ансамблем нескольких моделей (Inception, ResNet, Inception ResNet) и обгоняет победителей прошлого всего на полпроцента (кстати, публикации еще нет, и есть мизерный шанс, что там реально что-то новое). Кстати, как видите из результатов имаджнета, что-то пошло не так с добавлением слоев, о чем свидетельствует рост в ширину архитектуры итоговой модели. Может, из нейросетей уже выжали все что можно? Или NVidia слишком задрала цены на GPU и тем самым тормозит развитие ИИ? Зима близко? В общем, на эти вопросы я тут не отвечу. Зато под катом вас ждет много картинок, слоев и танцев с бубном. Подразумевается, что вы уже знакомы с алгоритмом обратного распространения ошибки и понимаете, как работают основные строительные блоки сверточных нейронных сетей: свертки и пулинг.

Читать дальше →

Факторное моделирование с помощью нейронной сети

Время на прочтение16 мин
Количество просмотров19K
В статье рассматривается факторное моделирование с помощью метода факторизации на базе нейронной сети и алгоритма обратного распространения ошибки. Этот метод факторизации является альтернативой классическому факторному анализу. Данный метод был усовершенствован для проведения факторного вращения и получения интерпретируемого решения. Факторная структура, полученная с помощью данного метода факторизации, находятся в соответствии с результатами факторного моделирования посредством других методов.
Читать дальше →

Нейронные сети для начинающих. Часть 1

Время на прочтение7 мин
Количество просмотров1.6M
image

Привет всем читателям Habrahabr, в этой статье я хочу поделиться с Вами моим опытом в изучении нейронных сетей и, как следствие, их реализации, с помощью языка программирования Java, на платформе Android. Мое знакомство с нейронными сетями произошло, когда вышло приложение Prisma. Оно обрабатывает любую фотографию, с помощью нейронных сетей, и воспроизводит ее с нуля, используя выбранный стиль. Заинтересовавшись этим, я бросился искать статьи и «туториалы», в первую очередь, на Хабре. И к моему великому удивлению, я не нашел ни одну статью, которая четко и поэтапно расписывала алгоритм работы нейронных сетей. Информация была разрознена и в ней отсутствовали ключевые моменты. Также, большинство авторов бросается показывать код на том или ином языке программирования, не прибегая к детальным объяснениям.

Поэтому сейчас, когда я достаточно хорошо освоил нейронные сети и нашел огромное количество информации с разных иностранных порталов, я хотел бы поделиться этим с людьми в серии публикаций, где я соберу всю информацию, которая потребуется вам, если вы только начинаете знакомство с нейронными сетями. В этой статье, я не буду делать сильный акцент на Java и буду объяснять все на примерах, чтобы вы сами смогли перенести это на любой, нужный вам язык программирования. В последующих статьях, я расскажу о своем приложении, написанном под андроид, которое предсказывает движение акций или валюты. Иными словами, всех желающих окунуться в мир нейронных сетей и жаждущих простого и доступного изложения информации или просто тех, кто что-то не понял и хочет подтянуть, добро пожаловать под кат.
Читать дальше →

Парсинг резюме

Время на прочтение7 мин
Количество просмотров24K
Те кто сталкивался с задачами автоматизированного анализа резюме, представляют современное состояние дел в этой области — существующие парсеры в основном ограничиваются выделением контактных данных и ещё нескольких полей, таких как «должность» и «город».

Для сколько-нибудь осмысленного анализа этого мало. Важно не только выделить некие строки и пометить их тегами, но и определить, что за объекты кроются за ними.

Живой пример (кусок XML результата анализа резюме от одного из лидеров области Sovren):

    <EmployerOrg>
        <EmployerOrgName>ООО Звезда-DSME</EmployerOrgName>
        <PositionHistory positionType="directHire">
            <Title>Ведущий специалист отдела развития информационных систем</Title>
            <OrgName>
                <OrganizationName>ООО Звезда-DSME</OrganizationName>
             </OrgName>

Парсер Sovren прекрасно справился с выделением полей. Ребята не зря занимаются этим делом без малого 20 лет!

Но что дальше делать с «Ведущий специалист отдела развития информационных систем»? Как понять, что же это за должность, насколько опыт работы этого человека релевантен для той или иной вакансии?
Читать дальше →

Ближайшие события

Разработка интеллектуальных ботов с помощью Microsoft Bot Framework, Azure Cognitive Services и NER систем. Часть 1

Время на прочтение4 мин
Количество просмотров11K
На сегодняшний момент лишь мессенджеры (и, частично, игры) показывают стабильный рост аудитории на фоне падения всех статистических показателей классических мобильных приложений. WhatsApp заявляет об 1 миллиарде активных пользователях, Facebook Messenger – 900 миллионов, WeChat – 700 миллионов, а мессенджеры уже обогнали социальные сети по активной аудитории.

Для миллионов людей Facebook Messenger может стать первым местом, где они столкнутся с чатботами. И если люди начнут ими пользоваться, то это может стать новым Клондайком для разработчиков программного обеспечения — впервые после того, как компания Apple открыла App Store.

The Verge
Читать дальше →

«Везде как дома»: Какие технологии использует сервис Airbnb

Время на прочтение5 мин
Количество просмотров7.1K
Компания Airbnb была основана в 2008 году в Сан-Франциско. Брайан Чески и Джо Геббиа, основатели сервиса, едва сводили концы с концами, и чтобы наскрести денег на аренду жилья, они позволили незнакомцам ночевать на надувных матрасах в своей квартире.

Уже через год Airbnb получила $7 млн и сообщила о 700 тысячах операций бронирования жилья. Сервис продолжил свое интенсивное развитие и на сегодняшний день предлагает более 2 000 000 домов, квартир или комнат в 192 странах и 33 000 городах.

Однако чтобы управлять такой огромной системой и контактировать с большим количеством клиентов и домовладельцев, сложно обойтись без использования умных алгоритмов и компьютеризированных систем. Эта тема показалась нам интересной, потому мы подготовили материал о том, какие алгоритмы и методики делают жизнь компании и её клиентов проще.


/ фото Lukas CC
Читать дальше →

Логика сознания. Пояснение «на пальцах»

Время на прочтение2 мин
Количество просмотров43K

Цикл статей «Логика сознания» подошел к своей середине. Семь предыдущих частей были посвящены описанию паттерно-волновой модели распространения информации в мозгу, присущего этой модели механизма квазиголографической памяти, смысловой модели информации и того как миниколонки коры создают пространство вычисления контекстов.

Предлагаемая модель не относится к мейнстриму нейронауки. Большинство современных исследователей считают, что искусственные нейронные сети и биологические нейронные конструкции близки по своей сути и основаны на общих принципах. В нашей модели, мозг не имеет ничего общего с нейронными сетями. Различие приблизительно такое же, как между классической и квантовой механикой. Внешне результаты местами могут быть похожи, но в основе лежат совершенно разные принципы.

Обзор курсов по Deep Learning

Время на прочтение11 мин
Количество просмотров71K
Привет, Хабр! Последнее время все больше и больше достижений в области искусственного интеллекта связано с инструментами глубокого обучения или deep learning. Мы решили разобраться, где же можно научиться необходимым навыкам, чтобы стать специалистом в этой области.

image
Читать дальше →

Как проверить причинную связь без эксперимента?

Время на прочтение9 мин
Количество просмотров16K


Сегодня поговорим об установлении причинных связей между явлениями, когда невозможно провести эксперимент и А/В-тесты. Это довольно простая статья, которая будет полезна начинающим в статистике и машинном обучении или тем, кто раньше над такими вопросами не задумывался.

Действительно ли пациентам, тестирующим новое лекарство, становится лучше из-за лекарства, или они все все равно бы выздоровели? Ваши продавцы действительно эффективны или же они говорят с теми клиентами, которые и так готовы совершить покупку? Действительно ли Сойлент (или рекламная кампания, которая обойдётся фирме в миллион долларов) стоит вашего времени?
Читать дальше →

Так ли быстр ваш любимый С или нативная реализация линейной алгебры на D

Время на прочтение2 мин
Количество просмотров18K
Тем, кто занимается системами машинного обучения и компьютерным зрением, хорошо знакома такая библиотека как OpenBLAS (Basic Linear Algebra Subprograms). OpenBLAS написан на C и используется повсеместно там где нужна работа с матрицами. Так же у него есть несколько альтернативных реализаций таких как Eigen и двух закрытых имплементацией от Intel и Apple. Все они написаны на С\С++.

В настоящий момент OpenBLAS используется в матричных манипуляциях в таких языках как Julia и Python (NumPy). OpenBLAS крайне хорошо оптимизирована и значительная её часть вообще написана на ассемблере.

Однако так ли хорош для вычислений чистый C, как это принято считать?

Встречайте Mir GLAS! Нативная реализация библиотеки линейной алгебры на чисто D без единой вставки на ассемблере!
Читать дальше →

Создаем своего бота для игры в Го

Время на прочтение8 мин
Количество просмотров13K


Я занимаюсь разработкой своего скромного бота для игры в Го. И меня искренне удивляет отсутствие информации эту тему на русском языке. Поэтому я решил поделиться накопленными знаниями в этой статье.

Я расскажу о том, как сделать простого бота. Освещу основные этапы, начиная от поиска ходов и эвристических алгоритмов и заканчивая публикацией вашего создания на онлайн-сервере KGS.
Читать дальше →

Вклад авторов