Обновить
118.65

Natural Language Processing *

Компьютерный анализ и синтез естественных языков

Сначала показывать
Порог рейтинга
Уровень сложности

Парадокс безопасности локальных LLM

Уровень сложностиПростой
Время на прочтение7 мин
Охват и читатели18K

Команда AI for Devs подготовила перевод исследования о парадоксе безопасности локальных LLM. Если вы запускаете модели на своём сервере ради приватности, эту статью стоит прочитать. Эксперименты показывают: локальные модели вроде gpt-oss-20b куда легче обмануть, чем облачные аналоги. Они чаще вставляют вредоносный код, не замечая подвоха, и превращаются в идеальную цель для атак.

Читать далее

Краткий обзор 10 локальных UI для LLM

Время на прочтение4 мин
Охват и читатели16K

На просторах интернета можно найти множество интерфейсов для LLM. Все они довольно разношерстные и обладают разным функционалом: от простых чатов до почти энтерпрайз-приложений.

Я установил и опробовал 10 них (на самом деле больше, но нормальных только 10 :) В этой статье найдете их краткий обзор.

Мои курсы: Разработка LLM с нуля | Алгоритмы Машинного обучения с нуля

Читать далее

BERT — это всего лишь одноэтапная диффузия текста

Время на прочтение9 мин
Охват и читатели7.8K

Некоторое время назад компания Google DeepMind представила Gemini Diffusion — экспериментальную языковую модель, генерирующую текст методом диффузии. В отличие от традиционных моделей, написанных в стиле GPT и генерирующих слово за словом,  Gemini создаёт текст целыми блоками, пошагово уточняя случайный шум.

Я прочитал статью «Large Language Diffusion Models» — и с удивлением узнал, что дискретная диффузия языка представляет собой просто обобщение метода генерации пропущенного токена (MLM), практикуемого уже с 2018 года. Я сразу подумал: «А можно ли тонко настроить BERT-подобную модель так, чтобы приспособить её к генерации текста?» Из чистого любопытства решил наскоро набросать проверку концепции.

Примечание: уже после того, как написал эту статью, я наткнулся на исследование DiffusionBERT, где сделано практически то же самое, что и у меня, но проект гораздо тщательнее протестирован. Посмотрите этот пост, если тема вас заинтересовала.

Читать далее

Обзор проблем и решений в ризонинговых LLM. Часть 1

Уровень сложностиПростой
Время на прочтение5 мин
Охват и читатели4.1K

Как-то раз мы со студентами-переводчиками по ИТ задались вопросом:

А реально ли LLM «думает»? Или она просто, подобно школьнику, подгоняет объяснения под ответ в конце учебника, не имея ни малейшего понятия о том, правилен ли этот ответ или логичны ли ее рассуждения?

Поиски ответов на этот вопрос привели нас к статье-исследованию "Empowering LLMs with Logical Reasoning: A Comprehensive Survey", адаптированный перевод которой мы и предоставляем вашему вниманию.

Статья представляет собой большой обзор подходов к тому, как сделать языковые модели не просто «говорящими машинами», а системами, которые умеют думать, делать выводы и находить логические связи, «не натягивая сову на глобус».

Читать о ризонинговых LLM

Как мы искали лучшие способы классификации

Уровень сложностиСредний
Время на прочтение26 мин
Охват и читатели4.6K

Всем привет!

В предыдущих статьях мы уже рассказывали о том, какими метриками можно пользоваться для оценки ответов AI-продуктов.

В большом количестве метрик для решения такой задачи предварительно надо оценить, к какой категории относится тот или иной ответ.

В этой статье мы преследовали две цели:

1. На примере показать, как применяются такие метрики и как с помощью них можно оценить качество работы модели.

2. Провести небольшое исследование по различным AI-продуктам с целью выявления наиболее оптимальных для решения задач классификации.

Читать далее

Что именно ИИ-чатботы делают «под капотом»

Время на прочтение10 мин
Охват и читатели11K

Среди друзей я пользуюсь репутацией «ты ж программист», поэтому у меня нередко интересуются, как именно работают «под капотом» такие известные инструменты как ChatGPT, Claude, Grok или DeepSeek. Со временем я отточил ответ на этот вопрос — и потому, что нашёл способы лучше на него отвечать, и потому, что научился сам создавать большую языковую модель с нуля. Поэтому и сам понимать большие языковые модели я стал гораздо лучше.

В этой статье я попытаюсь простыми словами описать, что именно в них происходит. Пост состоит из серии объяснений, причём каждое последующее из них основано на предыдущих, но немного уточняет их. Так мы постепенно дойдём до такого объяснения, которое будет совершенно строгим и верным, но могло бы немного вас ошеломить, если выдать его без подготовки.

Если вы — технарь, и читаете эту статью, чтобы больше узнать об ИИ, то настоятельно рекомендую вам дочитать её до конца. Если вы открыли ссылку просто из интереса, то можете смело читать до тех пор, пока вам будет интересно. Возможно, вы станете более уверенно понимать, что происходит в трансформерах, даже если не уловите всех мелких деталей.

Читать далее

Инструкция по бесплатной GPT генерации новых фичей для наращивания точности ML модели

Уровень сложностиПростой
Время на прочтение5 мин
Охват и читатели6.3K

Одним из самых важных навыков любого специалиста по данным или ML инженера является умение извлекать информативные признаки из исходного набора данных. Этот процесс называемый feature engineering (инженерия признаков), — одна из самых полезных техник при построении моделей машинного обучения.

Работа с данными требует значительных инженерных усилий. Хотя современные библиотеки вроде scikit-learn помогают нам с большей частью рутинных операций, по-прежнему критически важно понимать структуру данных и адаптировать её под задачу, которую вы решаете.

Создание новых, более качественных признаков позволяет модели лучше улавливать зависимости, отражающие особенности предметной области и влияющие на результаты факторы.

Разумеется, feature engineering — это времязатратный, креативный и нередко утомительный процесс, требующий экспериментов и опыта.

Недавно я наткнулся на интересный инструмент — Upgini. Следуя тренду на использование Large Language Models (LLM), Upgini применяет GPT от OpenAI, чтобы автоматизировать процесс feature engineering для ваших данных.

Подробнее о python библиотеке Upgini можно почитать на GitHub странице проекта. У проекта уже 345 звездных оценок, что является показателем востребованности и полезности функционала.

👉 GitHub - upgini/upgini: Data search library for Machine Learning

Читать далее

EvoPress: новый подход к оптимизации и сжатию LLM от исследователей Яндекса

Уровень сложностиСредний
Время на прочтение8 мин
Охват и читатели8.8K

Всем привет! Меня зовут Денис Кузнеделев, я работаю в команде Yandex Research. Моё основное направление деятельности на данный момент — задача сжатия и ускорения больших языковых и картиночных моделей. Затраты на обучение, инференс и деплой LLM стали одной из ключевых инфраструктурных проблем индустрии: дефицит вычислительных ресурсов, нехватка видеопамяти и высокие требования языковых моделей к вычислительным ресурсам препятствуют масштабированию решений. 

Сегодня я расскажу о методе неравномерного сжатия нейронных сетей EvoPress, который мы предложили совместно с коллегами из ETH Zurich и представили в июле этого года на одной из ведущих конференций по машинному обучению — ICML.

Читать далее

Разработка MCP-сервера на примере CRUD операций

Время на прочтение10 мин
Охват и читатели11K

Model Context Protocol (MCP) — это единый стандарт разработки API для сервисов, с которыми могут взаимодействовать LLM.

В этой статье на простом примере разберем, как создать свой MCP-сервер и как использовать его в связке с LLM.

Мои курсы: Разработка LLM с нуля | Алгоритмы Машинного обучения с нуля

Читать далее

CoolPrompt: Автоматическая Оптимизация Промптов для LLM

Уровень сложностиСредний
Время на прочтение6 мин
Охват и читатели9.4K

В этой статье мы представляем CoolPrompt - фреймворк автоматической оптимизации промптов (автопромптинга), который предлагает полный пайплайн оптимизации от постановки задачи до оценки результатов новых промптов. 

Читать далее

GigaMemory: научи ИИ «помнить всё» с AI Journey Contest 2025

Уровень сложностиПростой
Время на прочтение4 мин
Охват и читатели7.1K

Мы всё чаще делегируем ИИ-ассистентам рабочую рутину и бытовые вопросы. Но во взаимодействии с ними есть существенная проблема: модели не помнят пользователя. Между сессиями теряются имя, контекст работы, желаемые ограничения и предпочтения, значительно влияющие на то, что и как стоит ответить пользователю. В итоге диалог каждый раз начинается «с нуля», а ответы звучат усреднённо. Это снижает эффективность и подрывает доверие: когда ассистент не помнит важное о вас, он превращается в поисковик с красивыми фразами.

Мы в команде RnD для B2C SberAI хотим это исправить. Представляем вашему вниманию задачу GigaMemory: global memory for LLM. Мы предлагаем участникам построить долгосрочную персональную память для языковой модели — систему, которая хранит, обновляет и надёжно извлекает знания о конкретном пользователе. Привычки, предпочтения, ограничения и прочие факты о пользователе, которые могут пригодиться в дальнейшем общении.

Цель — научить ИИ отвечать не «в среднем по больнице», а исходя из вашего реального контекста: от прошлых задач на работе до семейных дат и спортивных планов.

Читать далее

Небольшое количество примеров может отравить LLM любого размера

Уровень сложностиПростой
Время на прочтение9 мин
Охват и читатели4.9K

Команда AI for Devs подготовила перевод исследования в котором учёные показали: чтобы встроить «бэкдор» в большую языковую модель, вовсе не нужно контролировать огромную долю обучающих данных — достаточно около 250 вредоносных документов. Этот результат переворачивает представления о масштабируемости атак через отравление данных и ставит новые вопросы к безопасности ИИ.

Читать далее

Почему «больше токенов ≠ лучше» или Как научить LLM работать с длинным контекстом

Уровень сложностиПростой
Время на прочтение11 мин
Охват и читатели6.1K

Всем привет! Меня зовут Наталья Бруй, я промпт-инженер в MWS AI. Вместе с моей коллегой  Анастасией Тищенковой мы решили ответить на вопрос, который мучает нашего пиарщика многих – почему больше токенов не равно лучше и  как заставить LLM работать адекватно на длинном контексте. 

Если вы создаете ИИ-решения для работы с большим объемом документов и хотите, чтобы LLM вам в этом помогала ( отвечала на вопросы по содержанию, генерировала запросы и заявления на их основе, делала резюме и и пр.) не абы как, а опираясь на выданные ей данные, тогда вам под кат. 

Оговорочка: эта статья для тех, кто находится на первых этапах освоения темы работы с длинным контекстом и вовлечен в создание каких-нибудь новых ИИ-продуктов на основе языковых моделей. Если вы уже две диссертации об этом написали, тогда можете сразу в комментариях ссылки оставить – мы почитаем. 

Читать далее

Ближайшие события

Симуляция делового совещания с GigaChat. Вся сила в промпте

Время на прочтение8 мин
Охват и читатели3.3K

Недавно мне поступил необычный запрос: нужен инструмент, который позволил бы отрабатывать навыки управления командой в условиях, максимально приближенных к реальности.

Так родилась идея: создать деловую игру - симулятор делового совещания, где игрок выступает в роли CEO, а реплики остальных участников генерирует ИИ (GigaChat). Хотелось проверить, насколько реалистичными могут быть дискуссии, если задать правильные условия.

Эта статья - о проработке промпта, результатах и выводах.

Читать далее

Что я вынес из Oxford Machine Learning Summer School 2025

Уровень сложностиСредний
Время на прочтение29 мин
Охват и читатели6K

Побывал на Oxford Machine Learning Summer School 2025 — одной из крупнейших летних школ, посвящённых искусственному интеллекту, проходившей в самом центре Оксфорда. В течение четырёх дней мы слушали лекции исследователей из DeepMind, Hugging Face, Amazon, Google, ученых топовых европейских вузов. Обсуждали foundation models, reinforcement learning, generative AI и on-device ML. В статье делюсь своими впечатлениями и кратким пересказом программы, отражающей мировые тренды в развитии современного машинного обучения.

Читать далее

Какой табличный формат LLM понимают лучше всего? (Результаты по 11 форматам)

Время на прочтение8 мин
Охват и читатели7.8K

Команда AI for Devs подготовила перевод статьи о том, в каком формате лучше всего передавать таблицы LLM. Исследование охватило 11 популярных форматов — от CSV и JSON до YAML и Markdown. Результаты неожиданны: разница в точности достигает 16 процентных пунктов, а выбор формата напрямую влияет на стоимость инференса и стабильность RAG-пайплайнов.

Читать далее

Зачем бизнесу GPT-платформа, а не просто LLM: опыт JET & Yandex GPT Lab

Уровень сложностиСредний
Время на прочтение6 мин
Охват и читатели4.6K

Меня зовут Антон Чикин, я руковожу отделом интеллектуального анализа в «Инфосистемы Джет». В статье я попробую показать на практическом примере, почему корпоративный ИИ нельзя свести к установке готовой LLM — и что именно приходится выстраивать вокруг неё, чтобы получить реальную ценность для бизнеса.

Этот материал будет полезен тем, кто отвечает за внедрение ИИ в компаниях среднего и крупного масштаба: ИТ-директорам, архитекторам корпоративных систем, специалистам по информационной безопасности и тем, кто рассматривает генеративный ИИ как инструмент автоматизации бизнес-процессов.

Читать далее

Как я переводил с английского документ от 1704 года без ChatGPT

Уровень сложностиПростой
Время на прочтение15 мин
Охват и читатели25K

Сначала был звонок. «Здравствуйте, мне нужно перевести документ с английского на русский. Только он не совсем обычный». Разберемся, подумал я. А вечером увидел на почте это.

Читать далее

Как открытые веса раскрыли секреты обучения GPT-5

Время на прочтение11 мин
Охват и читатели12K

Команда AI for Devs перевела статью, показывающую, что открытые веса — это не только про прозрачность, но и про утечку тайн обучения. На примере модели GPT-oss автор показывает, как можно восстановить части обучающего пайплайна и даже выявить, что GPT-5 видела фразы с сайтов для взрослых.

Читать далее

Все еще борешься с галлюцинациями? Ты просто не умеешь их использовать

Уровень сложностиСредний
Время на прочтение9 мин
Охват и читатели4.4K

Привет, Хабр! Меня зовут Василий Коновалов, я работаю в команде «Вычислительная семантика» в AIRI. Наша команда сфокусирована на исследовании галлюцинаций и на решении проблем доверительной генерации. Мы учимся находить галлюцинации и бороться с ними.

Но, возможно, мы не всегда должны делать это. Тем более, что научные работы показывают, что галлюцинации неизбежны. Вместо этого мы извлекли из них пользу: мы применили галлюцинации больших мультимодальных моделей для детекции странных картинок — то есть картинок, противоречащих здравому смыслу.

Об этом мы вместе с коллегами из Сколтеха, MWS AI и МФТИ написали научную статью Through the Looking Glass: Common Sense Consistency Evaluation of Weird Images, которую приняли на NAACL. Здесь я кратко расскажу, что именно мы сделали.

Читать далее

Вклад авторов