
Как отличить хороший ремонт от плохого, или как мы в SRG сделали из Томита-парсера многопоточную Java-библиотеку

Компьютерный анализ и синтез естественных языков
Одна из больших задач приложения для хранения и анализа покупок — поиск одинаковых или очень близких продуктов в базе данных, где собраны разномастные и непонятные наименования продуктов, полученные из чеков. Есть два вида входного запроса:
Запросы первого вида, как правило, исходят из продуктов в самом чеке, когда пользователю нужно подыскать продукты подешевле. Наша задача заключается в том, чтобы подобрать максимально похожий аналог товара из чека в других магазинах поблизости. Здесь важно подобрать наиболее соответствующую марку продукта и по возможности объём.
This is a very short executive summary (or a teaser) about what we managed to do in approximately 2 months in the Profi.ru DS department (I was there for a bit longer, but onboarding myself and my team was a separate thing to be done at first).
Оказывается для этого достаточно запуcтить всего лишь такой набор команд:
git clone https://github.com/attardi/wikiextractor.git
cd wikiextractor
wget http://dumps.wikimedia.org/ruwiki/latest/ruwiki-latest-pages-articles.xml.bz2
python3 WikiExtractor.py -o ../data/wiki/ --no-templates --processes 8 ../data/ruwiki-latest-pages-articles.xml.bz2
и потом немного отполировать скриптом для пост-процессинга
python3 process_wikipedia.py
Результат — готовый .csv
файл с вашим корпусом.
В 2020 году библиотека Natasha значительно обновилась, на Хабре опубликована статья про актуальную версию. Чтобы использовать инструменты, описанные в этом тексте, установите старую версию библиотекиpip install natasha<1 yargy<0.13
.
Раздел про Yargy-парсер актуален и сейчас.
Natasha — это аналог Томита-парсера для Python (Yargy-парсер) плюс набор готовых правил для извлечения имён, адресов, дат, сумм денег и других сущностей.В статье показано, как использовать готовые правила из Natasha и, самое главное, как добавлять свои с помощью Yargy-парсера.
Ноябрь считается месяцем литературного творчества. Каждый год в интернете проходит мероприятие NaNoWriMo (National Novel Writing Month). Участники должны до конца месяца написать новеллу длиной не менее 50000 слов. За 17 лет в нем поучаствовали больше 20000 человек.
В 2013 году у программистов появилось аналогичное соревнование — NaNoGenMo (National Novel Generation Month). Задача NaNoGenMo — написать программу, которая сгенерирует новеллу длиной 50000 слов или больше. При этом требования к новелле довольно слабые — подойдет любой текст достаточной длины. Как вы увидите, это может быть сборник рассказов, пьеса, кулинарная книга, словарь или туристический путеводитель. На самом деле, произведение не обязано даже быть текстовым.