Как стать автором
Обновить
16.97

Квантовые технологии

Квантовые вычисления, алгоритмы и вот это всё

Сначала показывать
Порог рейтинга
Уровень сложности

Информационный парадокс чёрных дыр теоретически разрешим на квантовом компьютере

Время на прочтение 12 мин
Количество просмотров 7K

В комментариях к одной из моих июльских статей «О возможных составляющих тёмной материи» уважаемый Дмитрий Кобзев @Kodim выдвинул простой и гениальный тезис: «темная материя — это материя в черных дырах. В статье этот вариант не рассматривается?» В статье этот вопрос действительно не рассматривается, но сам комментарий вернул меня к мыслям о том, есть ли реальные способы извлекать информацию из чёрной дыры — хотя бы для того, чтобы узнать, что происходит на горизонте событий и за ним. Поиски ответов на этот вопрос увели меня далеко за рамки голографического принципа, и сегодня я расскажу, как сегодня предполагается устранить или хотя бы обойти информационный парадокс чёрных дыр. Отличная вводная статья об информационном парадоксе чёрных дыр (автор оригинала — Мэтт Страсслер) переведена на Хабре уважаемым @SLY_G.

     

Читать далее
Всего голосов 23: ↑20 и ↓3 +17
Комментарии 60

Новости

Квантовое программирование для диспетчеризации производства

Уровень сложности Средний
Время на прочтение 6 мин
Количество просмотров 4.7K

Лучший способ изучить новую технологию это применить ее на практике. Но как быть, если у вас нет квантового компьютера, а на изучение физики нет времени/желания? Это не проблема, потому что сегодня мы разберем наиболее доступный и безболезненный способ погружения в квантовые алгоритмы на примере комбинаторной оптимизации. И начнем с распространенной задачи, которая возникает на производстве - диспетчеризация технологических операций. Устраивайтесь поудобнее, приготовьте чашку любимого напитка и поехали!

Читать далее
Всего голосов 9: ↑8 и ↓1 +7
Комментарии 1

Изучаем Q#. Не будь зашоренным…

Уровень сложности Сложный
Время на прочтение 4 мин
Количество просмотров 1K

Алгориитм Шора — квантовый алгоритм факторизации (разложения числа на простые множители), позволяющий разложить число M за время O((logM)^3) используя O(log M) логических кубитов.

Алгоритм Шора был разработан Питером Шором в 1994 году. Семь лет спустя, в 2001 году, его работоспособность была продемонстрирована группой специалистов IBM. Число 15 было разложено на множители 3 и 5 при помощи квантового компьютера с 7 кубитами.

Алгоритм Шора состоит из 2-х частей - квантовых и классических вычислений.

Квантовая часть алгоритма отвечает за определение периода функции с помощью квантовых вычислений.

Классические вычисления решают задачу как по найденному периоду степенной функции найти разложение на сомножители.

Практически, схема этого алгоритма полностью повторяет схему алгоритма Саймона, с отличием в последнем шаге - вместо применения оператора Адамара перед измерением входного регистра, используется оператор преобразования Фурье.

А какие есть ещё варианты определить период функции используя квантовые вычисления?

Когда-то ранее я писал статьи про способы сравнения (поиска фрагмента) изображений, поиска частоты сердечных сокращений с использованием операции вычисления скалярного произведения, которую я делал с помощью свёртки на основе БФП.

Фурье-вычисления для сравнения изображений

Определение частоты сердечных сокращений методом корреляции с использованием быстрых Фурье преобразований

а так же начал повторять эту технологию при квантовых вычислениях

Изучаем Q#. Алгоритм Гровера. Не будите спящего Цезаря

Так почему бы не повторить успешный успех и, заодно, обобщить теорию вопроса?

Читать далее
Всего голосов 2: ↑1 и ↓1 0
Комментарии 24

Изучаем Q#. Орёл или решка?

Уровень сложности Простой
Время на прочтение 4 мин
Количество просмотров 1.4K

Как и бит, кубит допускает два собственных состояния, обозначаемых |0> и |1> (обозначения Дирака), но при этом может находиться и в их суперпозиции.
В общем случае его волновая функция имеет вид A|0>+B|1>, где A и B называются амплитудами вероятностей и являются комплексными числами, удовлетворяющими условию |A|^2+|B|^2=1 (но это не обязательно соблюдать при записи - всегда подразумевается, что происходит нормирование величин).
При измерении состояния кубита можно получить лишь одно из его собственных состояний.
Вероятности получить каждое из них равны соответственно |A|^2 и |B|^2.
Как правило, при измерении состояние кубита необратимо разрушается, чего не происходит при измерении классического бита.

В квантовых вычислениях, мы имеем факт, что применение трансформации Адамара H к кубиту в состоянии |0> даёт нам его в равновероятном состоянии для исходов |0> и |1>, то есть в состоянии |0>+|1>

Но как нам задать нужное состояние кубита, то есть с заранее заданными значениями A и B ?

Вернее, как задать нужное состояние кубита, используя только минимальный набор базовых операций? Ведь любой QDK должен включать в себя методы инициализации кубита (и желательно в требуемом состоянии).
Ну а мы ограничимся в данном примере операциями H и Controlled X.

Бросим жребий?
Всего голосов 6: ↑3 и ↓3 0
Комментарии 1

Истории

Квантовые точки над «i»: как это открытие изменило мир науки

Уровень сложности Средний
Время на прочтение 6 мин
Количество просмотров 6.1K

В 2023 году Нобелевскую премию по химии получили трое ученых, чьи исследования были связаны с квантовыми точками. Для Питерской Вышки это приятное событие: работы физиков многим обязаны этому открытию. А Международная лаборатория квантовой оптоэлектроники и вовсе не выпускает эту тему из своего фокуса. Мы поговорили с руководителем департамента физики Алексеем Жуковым и профессором базовой кафедры ФТИ имени А. Ф. Иоффе Михаилом Глазовым.

Читать далее
Всего голосов 12: ↑10 и ↓2 +8
Комментарии 0

Изучаем Q#. Обучаем перцептрон

Уровень сложности Средний
Время на прочтение 16 мин
Количество просмотров 3.1K

Базовым элементом построения нейросетей, как мы знаем, является модель нейрона, а, соответственно, простейшей моделью нейрона, является перцептрон.

С математической точки зрения, перцептрон решает задачу разделения пространства признаков гиперплоскостью, на две части. То есть является простейшим линейным классификатором.

Обобщенная схема нейрона представляет собой функцию f(SUM Wi*xi - W0)

Здесь:

x1,...,xn – компоненты вектора признаков x=(x1,x2,...,xn);

SUM – сумматор;

W1,W2,...,Wn – синоптические веса;

f – функция активации; f(v)= { 0 при v < 0 и 1 при v>0 }

W0 – порог.

Таким образом, нейрон представляет собой линейный классификатор с дискриминантной функцией g(X)=f(SUM Wi*Xi - W0).
И задача построения линейного классификатора для заданного множества прецедентов (Xk,Yk) сводится к задаче обучения нейрона, т.е. подбора соответствующих весов W1,W2,...,Wn и порога W0.

Классический подход обучения перцептрона хорошо известен

• Инициализируем W0,W1,W2,...Wn (обычно случайными значениями)

• Для обучающей выборки (Xk,Yk) пока для всех значений не будет выполняться f(SUM Wi*Xki - W0)==Yi повторяем последовательно для всех элементов

W = W + r(Yk - f(SUM Wi*Xki - W0)) * Xk*, где 0 < r < 1 - коэффициент обучения

Для доказательства сходимости алгоритма применяется теорема Новикова, которая говорит, что если существует разделяющая гиперплоскость, то она может быть найдена указанным алгоритмом.

Что же нам может предложить модель квантовых вычислений для решения задачи обучения перцептрона - то есть для нахождения синоптических весов по заданной обучающей выборке?

Ответ - мы можем сразу опробовать все возможные значения весов и выбрать из них тот - который удовлетворяет нашим требованиям - то есть правильно разделяет обучающую выборку.

Для понимания данного туториала вам потребуются базовые знания по

• нейросетям

• квантовым вычислениям (кубиты и трансформации)

• программированию на Q-sharp

Читать далее
Всего голосов 5: ↑4 и ↓1 +3
Комментарии 23

Квантовые компьютеры. С точки зрения традиционного программиста-математика. Часть 7 — Заключительная

Уровень сложности Средний
Время на прочтение 11 мин
Количество просмотров 8.8K

Алгоритм Шора

В заключительной части попробуем разобраться в этом замечательном алгоритме, который в скором будущем погубит нашу цивилизацию, лишь только появятся мощности с достаточным количеством кубит для практической реализации алгоритма. Я попытаюсь упростить изложение и опустить некоторые выкладки, но сама суть алгоритма должна сохраниться через эти упрощения. Разобьем изложение на несколько этапов. Ну, начнем.

Читать далее
Всего голосов 19: ↑19 и ↓0 +19
Комментарии 8

Анонсирован выпуск первого в мире квантового компьютера с более чем 1000 кубитов

Уровень сложности Средний
Время на прочтение 4 мин
Количество просмотров 8.6K

С днём килокубита, Хабр! Меня зовут Алексей, я исследователь Центра научных исследований и перспективных разработок компании «ИнфоТеКС», аспирант Центра квантовых технологий МГУ. Сегодня поговорим о недавнем анонсе килокубитного квантового компьютера и разберёмся, ознаменовал ли он начало новой эры квантовых вычислителей.

Читать далее
Всего голосов 3: ↑2 и ↓1 +1
Комментарии 24

Международная гонка в области квантовых технологий и интернета набирает обороты

Время на прочтение 5 мин
Количество просмотров 2.3K

Квантовый интернет — это революционная сеть, которая способна изменить подход к  вычислениям, коммуникациям и измерениям. С помощью квантового интернета можно будет мгновенно обмениваться информацией и создавать мощные приложения — от сверхточных медицинских процедур до сложных финансовых моделей и улучшенных астрономических исследований.

Несмотря на технические сложности, быстрые инновации указывают на то, что потенциал квантовых технологий может быть раскрыт уже в ближайшие десять лет. В этой статье мы постарались разобраться, какие из стран вероятнее всего станут лидерами новой отрасли.

Читать далее
Всего голосов 6: ↑4 и ↓2 +2
Комментарии 4

Машинное обучение помогает классическому моделированию квантовых систем

Уровень сложности Средний
Время на прочтение 6 мин
Количество просмотров 1.5K

Используя «классические тени», обычные компьютеры могут превзойти квантовые компьютеры в сложной задаче понимания квантового поведения. 

Понять квантовую вселенную — задача непростая. Интуитивные представления о пространстве и времени терпят крах в крошечной сфере субатомной физики, допуская поведение, которое нашему макрочувству кажется совершенно странным. 

Квантовые компьютеры должны позволить нам использовать эту странность. Такие машины теоретически могли бы исследовать молекулярные взаимодействия для создания новых лекарств и материалов. Но, возможно, самое важное то, что сам мир построен на этой квантовой вселенной — если мы хотим понять, как она работает, нам, вероятно, понадобятся квантовые инструменты. 

Читать далее
Всего голосов 1: ↑1 и ↓0 +1
Комментарии 0

Теория конструкторов – наука о том, что можно, а что нельзя

Уровень сложности Средний
Время на прочтение 26 мин
Количество просмотров 6.1K

Пока большинство физиков-теоретиков заняты поисками фундаментальной «теории всего», которая должна объединить квантовую теорию поля с общей теорией относительности, некоторые учёные смотрят на это скептическим взглядом и предлагают двигаться совсем в другом направлении. Один из них – Дэвид Дойч – британский физик израильского происхождения, профессор Оксфордского университета, автор книг «Структура реальности» (1997) и «Начало бесконечности» (2011). С 2012 г. он вместе с итальянкой Кьярой Марлетто работает над теорией конструкторов, призванной – ни много ни мало – объединить все наши знания о реальности в единый набор мета-законов, или фундаментальных принципов, определяющих, что может происходить во Вселенной, а что запрещено. Теория конструкторов преподносится авторами как обобщение теории информации на всю остальную физику, а другие разделы физики, включая термодинамику, статистическую механику, теорию квантовых вычислений и даже квантовую механику – как её производные. Изучение конструкторов, по мнению Дойча, даст нам ключ к пониманию, откуда вообще взялись законы физики и почему они работают именно так, а не иначе. Но насколько оправданы его амбициозные заявления? Не является ли теория конструкторов очередной «теорией чего угодно», не дающей никаких предсказаний и неприменимой на практике?

Читать далее
Всего голосов 12: ↑10 и ↓2 +8
Комментарии 5

Изучаем Q#. Статистическое сравнение двух последовательностей чисел

Уровень сложности Средний
Время на прочтение 9 мин
Количество просмотров 2K

Добро пожаловать в новый мир новых технологий вычислений!

В быту, когда мы смотрим на разные предметы, мы пытаемся понять - похожи ли они или нет, и на сколько они похожи.

Так и в математике - когда мы смотрим на последовательностей чисел, мы пытаемся понять - похожи ли они или нет, и насколько они похожи.

Одним из таких критериев "похожести" является совпадение частотных характеристик этих последовательностей.

Рассмотрим вопрос, как реализовать такую проверку с использованием квантовых вычислений и напишем программку-тест на Q-sharp для проверки этих рассуждений.

Для понимания данного туториала вам потребуются базовые знания по

теории вероятности

алгебре

булевым функциям

свёртке, корреляции, скалярному произведению

квантовым вычислениям (кубиты и трансформации)

программированию на Q-sharp

Добро пожаловать, дорогу осилит идущий ...
Всего голосов 1: ↑1 и ↓0 +1
Комментарии 3

ПО для импортозамещения телекоммуникационных устройств

Уровень сложности Простой
Время на прочтение 3 мин
Количество просмотров 1K

Программа SIMLAD (SIMulating LAser Dynamics) моделирует новые способы передачи данных, не повторяя существующие. Она позволяет воспроизводить сложное поведение полупроводниковых лазеров в устройствах квантового распределения ключей, а также в классических телекоммуникационных приложениях.

«Насколько нам известно, в открытом доступе до сих пор не существовало удобного оконного приложения для моделирования лазерной динамики. Нашей целью было создать программу, которая бы по нажатию одной-двух кнопок могла бы в графическом виде представить результаты численного интегрирования скоростных уравнений лазерной динамики. Мы надеемся, что наша программа будет очень полезна инженерам и исследователям, которые занимаются низкоуровневым проектированием телекоммуникационных систем, в частности, квантовых систем связи, и поможет им находить новые способы модуляции и передачи данных», — сказал соавтор разработки Игорь Кудряшов, научный сотрудник компании QRate.

Читать далее
Всего голосов 1: ↑0 и ↓1 -1
Комментарии 0

Ближайшие события

Битва пет-проектов
Дата 25 сентября – 30 ноября
Место Онлайн
HighLoad++ 2023
Дата 27 – 28 ноября
Время 9:00 – 20:00
Место Москва Онлайн
Открытая трансляция Главного зала HighLoad++ 2023
Дата 27 – 28 ноября
Время 10:00 – 20:00
Место Онлайн
Business Code Conference
Дата 30 ноября
Время 17:30 – 00:00
Место Москва
Импульс Т1
Дата 1 декабря
Время 12:30
Место Москва Онлайн
YaTalks 2023 — главная конференция Яндекса для IT сообщества
Дата 5 – 6 декабря
Время 9:00 – 23:59
Место Москва Белград Онлайн

Изучаем Q#. Алгоритм Гровера. Не будите спящего Цезаря

Уровень сложности Простой
Время на прочтение 14 мин
Количество просмотров 4.3K

Криптохомячкам посвящается ...


Алгоритм Гровера представляет собой обобщённый, независящей от конкретной задачи поиск, функция которого представляет "чёрный ящик" f: {0,1}^n to {0,1}^n, для которой известно, что EXISTS!w:f(w)=a, где a — заданное значение.


Считаем, что для f и заданного a можно построить оракул Uf: { |w> to |1>, |x> to |0> if |x> != |w> }


Алгоритм Гровера достаточно прост


  1. Задаём в регистре (массиве кубитов) начальное значение H|0>
  2. Повторяем несколько раз (исходя из оценки) пару трансформаций над регистром
    • Отражение от решения Uw: { |w> to -|w>, |x> to |x> if |x> != |w> } или Uw = I-2|w><w|
    • Отражение от s=H|0> Us = 2|s><s|-I
  3. Забираем нужное решение из регистра (с большой долей вероятности, что оно правильное)

Не будите спящего Цезаря!


Применим этот алгоритм для решения задачи нахождения ключа шифра Цезаря ...

Читать дальше →
Всего голосов 9: ↑7 и ↓2 +5
Комментарии 4

Квантовые компьютеры. С точки зрения традиционного программиста-математика. Часть 6

Уровень сложности Средний
Время на прочтение 8 мин
Количество просмотров 8.3K

В прошлой части мы рассмотрели, как выглядят квантовые цепи с традиционными логическими операциями над данными. Сегодня мы рассмотрим два классических квантовых алгоритма, которые дают существенный выигрыш в производительности по сравнению с классическими алгоритмами решения этих задач.

Читать далее
Всего голосов 9: ↑8 и ↓1 +7
Комментарии 5

Квантовые точки: как их изобрели и зачем они нужны человечеству

Уровень сложности Простой
Время на прочтение 8 мин
Количество просмотров 5.6K

Нобелевскую премию по химии в 2023 году получили сразу три учёных за одно открытие. Мунги Бавенди, Луис Брюс и Алексей Екимов удостоились высшей научной награды за открытие и синтез квантовых точек — полупроводниковых нанокристаллов с уникальными оптическими и электронными свойствами. Квантовые точки находят или в скором времени найдут применение в самых разных сферах: от производства дисплеев до солнечной энергетики и биомедицины. Мы изучили десяток научно-популярных статей и обзоров, чтобы разобраться, что необычного в этих точках, как их открыли, как используют и планируют использовать уже в ближайшем будущем. 

Читать далее
Всего голосов 18: ↑17 и ↓1 +16
Комментарии 3

Изучаем Q#. Делаем реализацию биноминального распределения

Уровень сложности Простой
Время на прочтение 6 мин
Количество просмотров 2.2K

Биномиальное распределение с параметрами n и p в теории вероятностей — распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна p.

Рассмотрим случай, когда p=0.5 - это делается только для упрощения примера.

В этом случае, согласно теории, вероятность выпадения исхода k на вероятностном пространстве из целых чисел равно P(k)=C(k,n)/2**n, где C(k,n) = n!/(k!(n-k)!) - коэффициент бинома Ньютона.

Поставим перед собой цель - сформировать в массиве кубитов, который мы будем рассматривать как регистр из нескольких кубитов, состояние SUM SQRT(C(k,n))|k>

Читать далее
Всего голосов 5: ↑4 и ↓1 +3
Комментарии 3

Бесконтактные и слабые измерения, контрфактические вычисления и контрпортация

Уровень сложности Средний
Время на прочтение 20 мин
Количество просмотров 2K

От философов-антиреалистов, эзотериков и богословов часто можно услышать проповеди на тему ограниченности научных методов и о существовании за пределами физического мира иных планов бытия, которые нематериальны и не могут быть познаны экспериментальным путём. Но они не в курсе, что наука уже много лет занимается изучением контрфактуалов - «потусторонних» событий, происходящих не в нашей вселенной, но тем не менее подчиняющихся известным физическим законам. Учёные постоянно открывают новые способы «взломать» классическую физику и ставят умопомрачительные эксперименты, результаты которых заставляют нас пересмотреть традиционные определения реальности. Практика показывает, что природа познаваема и содержит в себе всё необходимое для роста знания, главное – задавать ей правильные вопросы. Как измерить светочувствительную бомбу, не подрывая её? Как провести вычисление, не включая компьютер? Как увидеть, не глядя, и узнать о событии, которое не произошло? Как подсмотреть за котом Шрёдингера и воскресить его? Как отменить коллапс волновой функции? Наконец, как осуществить настоящую телепортацию без локального обмена информацией? Если обычная квантовая телепортация, запутанность и туннелирование уже не кажутся вам чем-то удивительным, готовьтесь к настоящим чудесам. В этой статье я разберу пять экспериментов, о которых вы вряд ли слышали, но результаты которых действительно взрывают мозг.

Читать далее
Всего голосов 14: ↑13 и ↓1 +12
Комментарии 6

10  наиболее часто используемых 1-кубитных квантовых вентилей

Время на прочтение 6 мин
Количество просмотров 1.4K

Основными элементами квантового компьютера являются квантовые биты и квантовые вентили. Квантовые вентили, в свою очередь, аналогичны обычным логическим вентилям, которые используются для обработки информации на обычных компьютерах. Квантовые вентили выполняют операции с квантовыми битами, изменяя их состояние в соответствии с логической функцией. Квантовые вентили могут быть реализованы на основе различных физических систем, например, на основе квантовых точек или сверхпроводников. 

Квантовые биты и квантовые вентили работают вместе, чтобы выполнить сложные квантовые вычисления. Например, с помощью квантовых вентилей можно создавать квантовые схемы, которые могут выполнять алгоритмы факторизации больших чисел или решения задач оптимизации. Кроме того, квантовые вентили также могут использоваться для создания квантовых версий классических алгоритмов, таких как алгоритм Шора для факторизации больших чисел. 

Так как кубит можно представить вектором в двумерном пространстве, то действие вентиля можно описать унитарнойматрицей, на которую умножается соответствующий вектор состояния входного кубита. Однокубитные вентили описываются матрицами размера 2 × 2. 

Вот, например, схема с одним кубитом, инициализированным состоянием |0〉, которая выполняет одну операцию, X, а затем измеряет кубит.            

Читать далее
Всего голосов 2: ↑2 и ↓0 +2
Комментарии 0

Новая интерпретация квантовой запутанности

Уровень сложности Простой
Время на прочтение 9 мин
Количество просмотров 23K

В научно‑популярных СМИ широко обсуждается такое явление как «квантовая запутанность». Его суть в том, что несколько элементарных (и не только) частиц могут «запутаться» при взаимодействии и каким‑то образом синхронизировать свои параметры, находясь на большом расстоянии друг от друга. Как бы нарушая при этом один из основных постулатов нашей Вселенной — невозможность передачи информации быстрее скорости света.

Существует ряд гипотез, которые пытаются как‑то это объяснить, но единого мнения по ним нет до сих пор. В этой публикации я рискну предложить свою гипотезу, которая будет исходить из анализа возможностей восприятия Мира субъектами. То есть, по моему мнению, для объяснения многих явлений и процессов Мира важно не только изучать сами эти явления и процессы, но также понимать, как они могут восприниматься на субъективном уровне.

Читать далее
Всего голосов 14: ↑8 и ↓6 +2
Комментарии 91

Вклад авторов