Все потоки
Поиск
Написать публикацию
Обновить
8.8

TensorFlow *

открытая библиотека для машинного обучения

Сначала показывать
Порог рейтинга
Уровень сложности

Сказки от TENSORFLOW и LSTM

Время на прочтение8 мин
Количество просмотров4K

Представляем разбор применения алгоритмов машинного обучения с использованием технологий LSTM для создания текстов.

В итоге должен получиться генератор более-менее осмысленного текста. Способы создания текстов на специальную, определенную пользователем, тему затронуты не будут – но в целом, текст будет создан в том стиле, в котором написана «обучающая выборка».

Кстати об обучающей выборке: в качестве оной будут использованы народные сказки братьев Гримм. Эти тексты будут обработаны, разбиты на биграммы уровня символов, из которых будет составлен словарь из уникальных биграмм.

Читать далее

Анализ стадий волейбольной игры с помощью искуственного интеллекта

Время на прочтение2 мин
Количество просмотров4K

Распознаем стадии волебольной игры на основе детектора игроков.

Читать далее

Cимбиоз цифр и искусства (часть 2)

Время на прочтение6 мин
Количество просмотров1.2K

В продолжении поста о создании алгоритма распознавания картин художников, хочу поделиться одной мыслью. Искусственный Интеллект как я его всегда представлял, являлся неким разумом, рациональной машиной по разрешению заданных вопросов и задач, заданных человеком. Будь то скрипт с исходными данными, или же голосовой помощник, он готов дешифровать и анализировать входящую информацию и выдавать ответ, даже если он в принципе неверный. Просто статистически данный ответ являлся наиболее верным за определённый отрезок времени (массив данных). Т.е. в большинстве алгоритмов главенствует системный подход к обработке данных (по аналогии, по логике, по большинству совпадений и т.д.). Как-бы я обрадовался если увидел где-нибудь "нелогичный" нерациональный ИИ-помощник, который выдавал странный, но главное правильный вариант из множества возможных, так сказать, попадал бы в "яблочко". К примеру, хотел бы я посмотреть вечером фильм,но, и чтобы этот фильм мне точно понравился бы. Задаю вопрос онлайн-помощнику, и что он выдаёт? Он выдаёт то, что смотрели и лайкали множество людей до этого, или он выдаёт высокорейтинговое кино определённого жанра, который я задал, но не имеющего ничего общего с тем, что мне действительно по душе. Я, конечно, знаю, какие фильмы мне пришлись "по душе". Лезу в поисковик, и набираю фильм наподобие... или фильмы похожие на... после чего вижу три-четыре портала с бесконечными списками фильмов. Вхожу и обнаруживаю, что эти фильмы, во первых далеки друг от друга по своей сути, и во вторых они может мне и понравились бы мне, но с совсем другой стороны, как будто я увидел их случайно щёлкая пультом ТВ и решил остановиться на них.

Далее: Тест модели распознавания искусства

5% из 666 репозиториев Python содержат ошибки из-за запятых (в том числе Tensorflow, PyTorch, Sentry и V8)

Время на прочтение3 мин
Количество просмотров5.9K
Мы выяснили, что в 5% из 666 исследованных нами репозиториев Python с открытым исходным кодом на GitHub есть три бага, вызванных ошибочным использованием запятых.

Слишком мало запятых


Случайно пропущенная запятая в строке списка/кортежа/множества, приводящая к ненужной конкатенации строк.

Читать дальше →

Го: Дообучаем модель

Время на прочтение6 мин
Количество просмотров2.5K
What will we do with a drunken sailor,
What will we do with a drunken sailor,
What will we do with a drunken sailor,
Early in the morning?

Drunken Sailor


В прошлый раз мы остановились на том, что модели на основе свёрточных нейросетей, вполне способны подсказывать интересные и неочевидные ходы и, таким образом, могут использоваться как основа для построения бота для игры Го. Напомню, что источником модели послужила вот эта замечательная книга. Для того чтобы двигаться дальше: дообучать модель, просто с ней экспериментировать или вообще полностью переделать и обучить с нуля, требовались вычислительные ресурсы. И они появились…
Читать дальше →

Digital art и искусственный интеллект — симбиоз цифр и искусства

Время на прочтение5 мин
Количество просмотров3.7K

В качестве предисловия оговорюсь, что на Хабре я впервые, решил представить свою дебют на этой платформе, так сказать. Речь здесь не пойдёт о рисовании картин с использованием AI и графических паттернов. Скорее наоборот, превращение классического изобразительного исксства в многочисленную последовательность нейронных сетей в итоговым кодом в заключительном виде. Расскажу предысторию. В начале этого года, случайным образом, попало в моё поле зрения одно заманчивое словосочетание - digital art. И так как я в теме crypto уже давненько, я не смел не поинтересоваться, каким образом искусство (будь то живопись или музыка) коррелирует с криптой, и как это происходит (и для чего))) на просторах блокчейна. В итоге ознакомления с этой идеей, и не только идеей, но и инфраструктурой NFT (Non-Fungible-Token, невзаимозаменяемый цифровой актив), я с радостью обнаружил что уже хочу создать что-то подобное, но в своём, авторском исполнении. Парой слов опишу, что зверёк по имени НФТ это хэшированное изображение в любом формате,  записанное в сети блокчейн в формате, являющегося аналогом ERC-721 в сети Ethereum (для тех кто ещё не в курсе темы). Задуманному быть конечно, но сказать легко, а вот сделать - труднее. Особенно, когда делаешь что-то впервые. Начал я с изучения подобных платформ на просторах всемирной паутины, начиная с крупнейших маркетплейсов opensea.io, makersplace.com,  и не очень крупных, pixeos.art, ghostmarket.io и много много других.

Кроме маркетплейсов, я обнаружил чисто minting-платформы, как правило тематические, т.е. они занимаются только созданием NFT карточек и как-правило одного направления. Криптокотики всякие (с них всё и началось!), Криптопанки и прочая фауна. Нашлось кроме всего пару аутсайдеров, которые вовсе создавали неформатные NFT, с прицелом на автоматическое масштабирование за счёт пользователей, к примеру на одной из платформ за NFT контент принимаются уникальные ссылки в интернете, на другой - регистрируются домены, а заодно и снимок с NFT. Не буду сильно углубляться в обозревание ежедневно растущего формата цифровых активов NFT, а лучше наконец-то перейду к своей задумке.

Читать далее: критерии распознавания арта

Нейродайджест: главное из области машинного обучения за декабрь 2021

Время на прочтение4 мин
Количество просмотров4.6K

Генерация 3D-моделей из текстового описания и видеозаписей, сделанных на обыкновенный смартфон, конкурент DALL-E, ускоренная GAN-инверсия и многое другое в подборке материалов за декабрь, а также небольшие новости о будущем дайджеста.

Перейти к обзору

Нейродайджест: главное из области машинного обучения за ноябрь 2021

Время на прочтение3 мин
Количество просмотров4.2K

Генерация видео из текста от Microsoft, новые редакторы изображений от NVIDIA и Adobe, высококачественные NeRF-модели и многое другое в ноябрьской подборке.

Перейти к обзору

Войти вайти в 37 лет, личный опыт

Время на прочтение11 мин
Количество просмотров47K

Сейчас мне сорок пять, и я наконец получил нормальную фултайм позицию аналитика данных. У меня первый диплом - Провизор по специальности Фармация. Я успел поработать таксистом, разнорабочим на складе лекарственных трав, заготовщиком, владельцем цеха металлообработки и одновременно рабочим в этом цеху. Был фармацевтом за кассой, заместителем заведующей аптекой, владельцем аптеки. Никогда не думал, что буду работать в IT, хотя всегда интересовался этой темой.

В школе у нас был компьютерный класс...

Платформа Deepstream от Nvidia для систем на базе компьютерного зрения

Время на прочтение8 мин
Количество просмотров7.2K

Компьютерное зрение – это увлекательная область искусственного интеллекта, имеющая огромное значение в реальном мире. Forbes ожидает, что к 2022 году рынок компьютерного зрения достигнет оборота 50 миллиардов долларов, а всех нас ждет новая волна стартапов в этой области [1]. В своей статье я хотел бы поделиться своим опытом и опытом Data Science-команды компании Accenture по созданию цифрового решения потоковой аналитики на базе компьютерного зрения.

Читать далее

Как можно взять tensorflow и смешать две картинки в одну

Время на прочтение6 мин
Количество просмотров5.7K

Возможно, вы встречали изображения, в которых смешаны два образа. Вблизи виден один, а издалека — другой. Например, Эйнштейн и Мадонна.

Не знаю, как делались оригинальные, но я попробовал сделать нечто похожее с помощью tensorflow.

Читать далее

Эмбеддинги признаков и повышение точности ML-моделей

Время на прочтение7 мин
Количество просмотров41K

Прим. Wunder Fund: короткая статья о том, как эмбеддинги могут помочь при работе с категориальными признаками и сетками. А если вы и так умеете в сетки — то мы скоро открываем набор рисерчеров и будем рады с вами пообщаться, stay tuned.

Создание эмбеддингов признаков (feature embeddings) — это один из важнейших этапов подготовки табличных данных, используемых для обучения нейросетевых моделей. Об этом подходе к подготовке данных, к сожалению, редко говорят в сферах, не связанных с обработкой естественных языков. И, как следствие, его почти полностью обходят стороной при работе со структурированными наборами данных. Но то, что его, при работе с такими данными, не применяют, ведёт к значительному ухудшению точности моделей. Это стало причиной появления заблуждения, которое заключается в том, что алгоритмы градиентного бустинга, вроде того, что реализован в библиотеке XGBoost, это всегда — наилучший выбор для решения задач, предусматривающих работу со структурированными наборами данных. Нейросетевые методы моделирования, улучшенные за счёт эмбеддингов, часто дают лучшие результаты, чем методы, основанные на градиентном бустинге. Более того — обе группы методов показывают серьёзные улучшения при использовании эмбеддингов, извлечённых из существующих моделей.

Эта статья направлена на поиск ответов на следующие вопросы:

1. Что такое эмбеддинги признаков?
2. Как они используются при работе со структурированными данными?
3. Если использование эмбеддингов — это столь мощная методика — почему она недостаточно широко распространена?
4. Как создавать эмбеддинги?
5. Как использовать существующие эмбеддинги для улучшения других моделей?

Читать далее

Го: Долгая дорога к боту

Время на прочтение28 мин
Количество просмотров6.6K
There is no difference between theory and practice in theory,
but there is often a great deal of difference between theory
and practice in practice.

Yogi Berra

Я слепым вместо глаз вставил звезды и синее небо.

Юрий Шевчук


Тема игровых ботов с самого начала была для меня довольно чувствительной. Используя Dagaz, я научился воссоздавать самые разнообразные игры, но что в них толку, если с тобой никто не играет? Nest позволил разработать сервер, для игры по сети, но до тех пор пока на нём не слишком много народу, боты продолжают оставаться актуальными. Универсальные боты, которые я писал, были медленными и слабыми. К счастью, знакомство с Garbochess позволило переломить ситуацию, по крайней мере в том, что касалось шахматных игр. Признаюсь честно, я никогда не думал, что у меня появится бот для игры в Го
Читать дальше →

Ближайшие события

Нейродайджест: главное из области машинного обучения за октябрь 2021

Время на прочтение4 мин
Количество просмотров2.6K

3D-рендеринг сцены из нескольких фотографий, определение глубины и освещения по фото, нейронный дизайнер интерьеров, генерация звука по видео и многое другое в октябрьской подборке.

Перейти к обзору

Распознаём позу прямо в браузере в реальном времени

Время на прочтение9 мин
Количество просмотров7.8K


Сегодня показываем и рассказываем, как прямо в браузере при помощи ИИ распознать сложную позу человека. Это пригодится, например, в разработке приложений для физических упражнений. Ранее с этой задачей не справлялись даже лучшие детекторы. За подробностями приглащаем под кат, пока у нас начинается флагманский курс Data Science.
Читать дальше →

Нейродайджест: главное из области машинного обучения за сентябрь 2021

Время на прочтение4 мин
Количество просмотров4.5K

Первая бестекстовая NLP-модель от FAIR, предсказание погоды от DeepMind, неожиданное применение CLIP в робототехнике и много другое в сентябрьской подборке:

Перейти к обзору

KotlinDL 0.3: поддержка ONNX, Object Detection API, 20+ новых моделей в ModelHub, и много новых слоев

Время на прочтение12 мин
Количество просмотров2.6K

Представляем версию 0.3 библиотеки глубокого обучения KotlinDL!

Вас ждет множество новых фич: новые модели в ModelHub (включая модели для обнаружения объектов и распознавания лиц), возможность дообучать модели распознавания изображений, экспортированные из Keras и PyTorch в ONNX, экспериментальный высокоуровневый API для распознавания изображений и множество новых слоев, добавленных контрибьюторами. Также KotlinDL теперь доступен в Maven Central.

В этой статье мы коснемся самых главных изменений релиза 0.3. Полный список изменений доступен по ссылке.

Узнать больше о релизе

LSTM классификация учетных данных рабочего времени сотрудников компании

Время на прочтение10 мин
Количество просмотров4.9K

Проблема

Наравне с многими компаниями, занимающимися разработкой ПО, в качестве составления общей картины о затраченном сотрудниками времени (а также способа расчета заработной платы, что не слишком важно) на те или иные задачи использует таймшиты - записи с указанием проекта, длительности выполнения задачи и кратким описанием проделанных действий. Однако если с первыми двумя пунктами проблем зачастую не случается, то к “творческой” части проводки периодически возникают вопросы: из текстов не всегда понятно, что конкретно сделал человек за тот или иной промежуток времени, и это может привести к недопониманию и конфликтам со стороны заказчиков, а также банально помешает грамотному учету рабочих часов сотрудников.

В качестве способа смягчения ситуации было решено разработать классификатор текстов, который смог бы на этапе заполнения сориентировать работника по поводу корректности и доступности для понимания составленной им проводки. Что из этого получилось - читайте далее.

Цель исследования

Цель исследования - разработка модели для классификации проводок на валидные и не валидные, а также на 8 классов по смыслам, а именно: анализ данных, провел встречу, подготовил отчет, разработал функциональность, сделал документацию, развертывание сервера, тестирование, обучение. Также должны иметься 2 дополнительных класса: «Отпуск» и «Очень плохая проводка», если смысла текста проводки не понятен.

Подготовка данных

Был получен датасет, состоящий из 6000 текстов проводок из системы учета времени сотрудников компании НОРБИТ. Сет был размечен вручную в соответствии с описанной выше классификацией – получили 2297 экземпляров.

Читать далее

Нейродайджест: главное из области машинного обучения за август 2021

Время на прочтение4 мин
Количество просмотров4.7K

Новая архитектура-генералист для работы с комбинированными типами данных от DeepMind, генерация внешности от младенчества до глубокой старости, синтез фотореалистичных изображений по наброску и многое другое в августовской подборке. 

Перейти к обзору

Нейродайджест: главное из области машинного обучения за июль 2021

Время на прочтение3 мин
Количество просмотров5.8K

Новый язык программирования от Open AI, рост популярности диффузионных моделей, чат-бот с памятью не как у золотой рыбки — об этом и многом другом в июльском выпуске.

Перейти к обзору