Базы данных: большой обзор типов и подходов. Доклад Яндекса
— О чем именно мы будем говорить? Не о примитивных селектах и джойнах — о них, я думаю, большинство из вас уже знает.
Java-Пользователь
С тех пор, как нейронные сети начали набирать популярность, большинство инженеров стали решать многие из задач ПО в области Public Safety методами deep learning. Несмотря на то что у нейросетей нет конкурентов в вопросах обнаружения (detection) и распознавания (identification) объектов, всё же они не могут похвастаться способностью анализировать и рассуждать, а лишь создают закономерности, которые не всегда можно понять или интерпретировать.
Мы придерживаемся такого мнения: для трекинга нескольких объектов более эффективными будут интерпретируемые и предсказуемые подходы, такие как, например, метод вероятностной ассоциации данных (probabilistic data association approach).
О точности трекинга и преимуществах выбранного нами подхода наглядно (подробнее в посте):




Сравнение популярного трекера Re3 (слева) и нашего компонента AcurusTrack (справа)
Дисклеймер: этот пост не претендует на почетный статус “средства от всех бед в Public Safety Software”. Мы также не заявляем, что изобрели что-либо новое. Мы лишь приводим примеры некоторых популярных подходов к решению задачи мультитрекинга, анализируем их и предлагаем собственную практическую реализацию.
Целиком проект лежит на GitHub.
*"ублюдок" — вольный перевод слова "git" — "an unpleasant or contemptible person", "неприятный или презренный человек".

В комментариях к статье 15 базовых советов по Git для эффективной работы каждый день развернулась дискуссия на тему эффективности использования тех или иных команд и опций. Надо признать, что git предоставляет столько различного функционала, что во-первых, за всем становится невозможно уследить, а во-вторых, его можно совершенно по-разному вписывать в рабочий процесс.
Давайте посмотрим, что можно использовать, чтобы улучшить себе жизнь. Статья предполагает, что читатель умеет пользоваться основными возможностями git и понимает что делает, когда, скажем, вводит в консоль git rebase --merge --autostash.




Привет, Хабр! Меня зовут Стас, и я отвечаю за направление Common Libraries в компании ABBYY. Недавно мы выложили на GitHub созданную нами библиотеку для машинного обучения NeoML.
NeoML — это кроссплатформенная C++ библиотека, позволяющая организовать полный цикл разработки ML-моделей. Основной фокус в ней сделан на простом и эффективном запуске готовых моделей на различных платформах. Даже если эти модели созданы другими фреймворками.
Вы спросите: зачем нужна еще одна библиотека машинного обучения?
Ниже я отвечу на этот вопрос, расскажу, как мы создавали нашу библиотеку, с какими сложностями столкнулись и что в итоге получилось. И в конце приведу результаты сравнительных замеров производительности.
В трёх частях этой статьи мы:

Предлагается вниманию пересказ статьи Core expansion: a new community detection algorithm based on neighborhood overlap, вышедшей в журнале Social Network Analysis and Mining, номер 10, 30, (2020) с нашими комментариями. В этой статье описывается новый алгоритм для выделения сообществ в графе, основанный на Jaccard index.
Заявленными преимуществами алгоритма являются детерминированность и более крупные выделяемые сообщества при хорошей скорости работы. К сожалению, нам не удалось найти авторскую реализацию данного алгоритма, но мы с коллегами не отчаялись и за выходные написали свою.
Наша имплементация написана на Java и доступна в GitHub под MIT-лицензией. Возможно использование как в качестве отдельного приложения командной строки, так и в качестве разделяемой Java-библиотеки.
В конце этой статьи мы расскажем, где и для каких целей мы анализируем графы в Райффайзенбанке.
Привет, Хабр! В этой статье я бы хотел рассказать как я сделал распознавалку русских букв и прикрутил к этому небольшой графический интерфейс.
Спойлер: в результате должно получиться вот так:








Хабр, это снова я, Алексей Рак (фото не мое). В прошлом году, помимо основной работы, мне довелось стать одним из авторов задач для кандидатов в Яндекс. Сегодня наша команда впервые за долгое время публикует на Хабре реальные задачи для разработчиков, которые устраиваются в компанию. Эти задачи использовались до февраля 2020 года при отборе на стажировку для бэкендеров. Решения проверял компьютер. Сейчас кандидатам достаются похожие задания.