Pull to refresh
5
0
Александр Абрамов @Andriljo

Руководитель RnD ML/AI для b2c

Send message

Более мощное семейство моделей YandexGPT 4: рост качества ответов, длинный контекст, пошаговые рассуждения

Reading time5 min
Views9.9K

Сегодня мы открываем доступ к четвёртому поколению наших больших языковых моделей: более мощная YandexGPT 4 Pro и облегчённая YandexGPT 4 Lite уже доступны через API в Yandex Cloud. Постепенно пользователям платформы станут доступны все их возможности. А первым сервисом Яндекса, где появится YandexGPT 4, станет Алиса с опцией «Про».

Новое семейство моделей умеет обрабатывать более сложные запросы, работать с расширенным контекстом, поддерживает скрытые рассуждения и вызов функций для работы с внешними инструментами. Нашей команде удалось значительно улучшить качество ответов: YandexGPT 4 Pro в 70% случаев отвечает лучше своей прошлой версии, а YandexGPT 4 Lite в среднем отвечает не хуже, чем самая мощная модель предыдущего поколения.

Вместе с Андреем Бутом @andbout, руководителем команды YandexGPT Alignment, кратко расскажем, что мы сделали для улучшения ответов и решения более сложных запросов, покажем результаты замеров качества и сравнения с другими моделями.

Читать далее
Total votes 39: ↑34 and ↓5+35
Comments46

Управление Данных с Elasticsearch: Обучение и Практика

Reading time5 min
Views5.8K

В эпоху больших данных эффективный поиск и анализ информации становятся критически важными для бизнеса и разработки. Elasticsearch — это мощный инструмент, который позволяет быстро и эффективно обрабатывать огромные объемы данных, предоставляя пользователям возможность находить нужную информацию в считанные секунды.

Эта статья предназначена для тех, кто хочет освоить основы Elasticsearch и научиться использовать его возможности на практике. Мы рассмотрим ключевые концепции, такие как индексы, документы и запросы, а также научимся настраивать окружение и выполнять основные операции. Независимо от того, являетесь ли вы разработчиком, аналитиком или просто хотите расширить свои знания о современных технологиях обработки данных, это руководство поможет вам уверенно шагнуть в мир Elasticsearch. Подготовьтесь к увлекательному путешествию в мир поисковых технологий!

Начать практику
Total votes 23: ↑20 and ↓3+19
Comments4

Английский для продакта: как я выучил язык для срочного поиска работы

Reading time9 min
Views28K

В этой статье речь пойдет о том, как я внезапно встал перед необходимостью выучить английский язык для работы и таки выучил его.

Недавно я завершил занятия английским языком, потому что выполнил задачи и достиг целей. В отношении английского со мной такое впервые. Возможно, дело в том, что на этот раз у меня была четкая цель - после эмиграции сменить работу и свободно говорить по-английски на должности продакт-менеджера. Делюсь опытом.

Читать далее
Total votes 16: ↑12 and ↓4+13
Comments55

Персональное ранжирование на Авто.ру: как не потерять главный смысл поиска по параметрам

Reading time9 min
Views5.5K


Поиск по базе объявлений — совсем не то же самое, что поиск по интернету. Он параметрический, а не полнотекстовый: вы можете с помощью фильтров однозначно определить, что вам нужно, сузив область поиска. Поэтому и ранжирование в нём, на первый взгляд, играет не настолько большую роль — казалось бы, документов или карточек в выдаче не так много, чтобы дополнительно их ранжировать. Но это справедливо для небольшой базы и только для одного поискового сценария.

В параметрическом поиске Авто.ру действует правило: незачем строить за пользователя предположения о том, что он имел в виду. Мы в любом случае покажем все объявления, соответствующие поисковым фильтрам в запросе. Роль движка ранжирования — отсортировать карточки так, чтобы наиболее релевантные для конкретного пользователя оказались выше, не более. Я работаю над этим уже несколько месяцев, сейчас расскажу об устройстве движка и первых результатах.
Читать дальше →
Total votes 15: ↑12 and ↓3+13
Comments6

Автороцентричное ранжирование. Доклад Яндекса о поиске релевантной аудитории для авторов Дзена

Reading time9 min
Views6.9K
Важнее всего для сервиса Яндекс.Дзен — развивать и поддерживать платформу, которая соединяет аудитории с авторами. Чтобы быть привлекательной платформой для хороших авторов, Дзен должен уметь находить релевантную аудиторию для каналов, пишущих на любые темы, в том числе на самые узкие. Руководитель группы счастья авторов Борис Шарчилев рассказал про автороцентричное ранжирование, которое подбирает для авторов наиболее релевантных пользователей. Из доклада можно узнать о том, чем такой подход отличается от подбора релевантных айтемов — более популярного в рекомендательных системах.


Балансируя пользователецентричное и автороцентричное ранжирование, мы можем добиваться правильного соотношения счастья пользователей и счастья авторов.

Total votes 24: ↑23 and ↓1+22
Comments39

Ранжирование в Яндексе: как поставить машинное обучение на поток (пост #3)

Reading time8 min
Views19K
Сегодня мы завершаем серию публикаций о фреймворке FML, в которых рассказываем о том, как и для чего автоматизировали в Яндексе применение технологий машинного обучения. В сегодняшнем посте мы расскажем:
  • почему нужно следить за качеством факторов и как мы это делаем;
  • как FML помогает в задачах распределённых вычислений над поисковым индексом;
  • каким образом и для чего наши технологии машинного обучения уже применяются и могут быть применены как в Яндексе, так и вне его;
  • какую литературу можно посоветовать для более глубокого погружения в затронутую проблематику.

image
Читать дальше →
Total votes 36: ↑35 and ↓1+34
Comments3

Ранжирование в Яндексе: как поставить машинное обучение на поток (пост #2)

Reading time8 min
Views25K
Мы продолжаем серию публикаций о нашем фреймворке FML, который автоматизировал работу с машинным обучением и позволил разработчикам Яндекса использовать его в своих задачах проще и чаще. Предыдущий пост рассказывал о том, что такое функция ранжирования и как мы научились строить её, имея на входе лишь достаточно большое число оценок от асессоров и достаточно разнообразный набор признаков (факторов) документов по большому количеству запросов.

Из этого поста вы узнаете:
  1. Почему нам нужно подбирать новую формулу ранжирования очень часто, и как именно нам в этом помогает FML;
  2. Как мы разрабатываем новые факторы и оцениваем их эффективность.

image
Читать дальше →
Total votes 55: ↑52 and ↓3+49
Comments14

Ранжирование в Яндексе: как поставить машинное обучение на поток (пост #1)

Reading time6 min
Views51K
Сегодня мы начинаем публиковать серию постов о машинном обучении и его месте в Яндексе, а также инструментах, которые избавили разработчиков поисковой системы от рутинных действий и помогли сфокусироваться на главном — изобретении новых подходов к улучшению поиска. Основное внимание мы уделим применению этих средств для улучшения формулы релевантности, и более широко — для качества ранжирования.

image
Читать дальше →
Total votes 63: ↑56 and ↓7+49
Comments53

Трансформеры в Поиске: как Яндекс применил тяжёлые нейросети для поиска по смыслу

Reading time16 min
Views61K

Привет, Хабр. Меня зовут Саша Готманов, я руковожу группой нейросетевых технологий в поиске Яндекса. Сегодня на YaC 2020 мы впервые рассказали о внедрении трансформера — новой нейросетевой архитектуры для ранжирования веб-страниц. Это наиболее значимое событие в нашем поиске за последние 10 лет. 

Сегодня я расскажу читателям Хабра, в чём заключается иллюзия «поиска по смыслу», какой путь прошли алгоритмы и нейросети в ранжировании и какие основные сложности стоят перед теми, кто хочет применить для этой задачи трансформеры и даже заставить их работать в рантайме. 

Читать далее
Total votes 52: ↑50 and ↓2+71
Comments65

Разбор документа про AGI от Леопольда Ашенбреннера, бывшего сотрудника OpenAI

Level of difficultyMedium
Reading time11 min
Views41K

Леопольд Ашенбреннер, бывший сотрудник OpenAI из команды Superalignment, опубликовал документ под названием «Осведомленность о ситуации: Предстоящее десятилетие», в котором он делится своим видением будущего ИИ. Основываясь на своих знаниях в этой области, Ашенбреннер предсказывает стремительное развитие искусственного интеллекта в ближайшее десятилетие.

Мы прочитали этот документ объемом в 165 страниц за вас. В этой статье расскажем о ключевых идеях Ашенбреннера и о его прогнозах на будущее искусственного интеллекта.

Читать далее
Total votes 54: ↑51 and ↓3+62
Comments216

Дообучение ruGPT-3.5 13B с LoRA

Level of difficultyMedium
Reading time10 min
Views20K

Добрый день, уважаемые читатели и авторы Хабра!

Сегодня я рад представить вам подробное руководство по обучению модели ruGPT-3.5 13B с использованием датасетов модели Saiga-2/GigaSaiga, технологии Peft/LoRA и технологии GGML. Эта статья призвана стать полезным и практичным ресурсом для всех, кто интересуется машинным обучением, искусственным интеллектом и глубоким обучением, а также для тех, кто стремится глубже понять и освоить процесс обучения одной из самых мощных и перспективных русскоязычных моделей.

В данной публикации мы разберем каждый этап обучения модели, начиная от подготовки данных и заканчивая конвертацией в формат GGML. Буду рад, если мой опыт и знания помогут вам в вашем исследовании и экспериментах в этой захватывающей области!

Читать далее
Total votes 30: ↑30 and ↓0+30
Comments27

Распределённый инференс llama.cpp через RPC

Level of difficultyMedium
Reading time9 min
Views4.5K

Приветствую, хабровчане!

Идея создания данной публикации крутилась в моей голове уже давно, дело в том, что одно из моих хобби связанно с распределёнными вычислениями, а другое хобби связанно с нейросетями и мне давно не давала покоя идея запустить инференс LLM на нескольких компьютерах, но так чтобы все они выполняли работу над одной и той же моделью параллельно.

Погуглив некоторое время узнал, что проект LocalAI уже относительно давно поддерживает такую возможность, недолго думая я раскатал на нескольких компьютерах данный проект, после чего выполнил все необходимые настройки связав все инстансы в единую систему и, мягко говоря, был разочарован, уж слишком "фатально-недостаточным" оказалось данное решение, Docker-образ собран неоптимально, он был огромный по весу и только под amd64, неотключаемый веб-интерфейс шел в комплекте с проектом, скупой выбор моделей, некоторые из доступных LLM не работали в режиме RPC, все эмбеддинговые модели тоже отказывались запускаться в таком режиме, и так далее и тому подобное.

Повозившись ещё немного, полез в исходники и обнаружил упоминание проекта llama.cpp, затем нашёл вызов бинарника rpc-server. И вот я оказался на странице llama.cpp/examples/rpc и всё заверте...

Читать далее
Total votes 19: ↑19 and ↓0+26
Comments15

Дообучение saiga2_7b_lora

Level of difficultyMedium
Reading time10 min
Views11K

Дообучение 7-миллиардной модели Saiga2 под свои задачи, используя сгенерированный датасет с помощью GPT. В данной статье есть все необходимые ссылки и код для предобработки и запуска обучения модели, а также квантования модели.

Читать далее
Total votes 17: ↑14 and ↓3+17
Comments8

Был excel — стал ML: как мы расход ингредиентов учились прогнозировать

Reading time10 min
Views5.7K

Прогнозирование закупок и расхода ингредиентов — часть работы управляющего любым рестораном, которая может занимать несколько часов в неделю. Мы в Dodo Engineering задумались, как можно помочь и автоматизировать рутину, при этом улучшить качество прогноза.

В статье расскажу о том, как развивался процесс прогнозирования для наших пиццерий, как строили расчёт, о недостатках и плюсах инструментов для интеллектуального прогнозирования.

Поехали!
Total votes 43: ↑29 and ↓14+20
Comments4

Как сделать чат-бота лучше, нужен всего лишь простой советский… RAGAS

Reading time8 min
Views7.2K

В вводной части обзора мы познакомились с концепцией Retrieval Augmented Generation (RAG) и её расширением через методологию RAGAS (Retrieval Augmented Generation Automated Scoring). Мы разобрались, как RAGAS подходит к процессу оценки эффективности и точности RAG-систем.

В этой части мы более подробно рассмотрим техническую сторону RAGAS. Как обычно, начнем с более простых и интуитивно понятных примеров, потом перейдем к более сложным сценариям.

Читать далее
Total votes 13: ↑13 and ↓0+13
Comments1

Как мы сделали базу знаний Smarty на основе RAG

Level of difficultyEasy
Reading time6 min
Views4.1K

За 15 лет работы red_mad_robot база знаний компаний сильно масштабировалась. Появление новых артефактов и рост количества проектов усложнили актуализацию знаний для сотрудников. Времени на обновление данных часто не хватает, поиск материалов стал сложнее, а часть информации вообще канула в лету вместе с ушедшими сотрудниками. В итоге пересылка документов в чатах и многочисленные гугл-таблички стали самым простым, но не самым удобным и тем более безопасным вариантом.

Но мы ведь роботы, и там, где белковые пересылают документы в чатах, мы создаём умные сервисы. Так родилась база знаний Smarty.

Читать далее
Total votes 11: ↑11 and ↓0+14
Comments14

Как научить LLM понимать видео? Обзор подходов

Level of difficultyMedium
Reading time9 min
Views3.6K

Всем привет! Сегодня поговорим про задачу понимания видео и эволюцию подходов к обучению мультимодальных больших языковых моделей для этой задачи.

Video Understanding — направление на стыке компьютерного зрения (CV) и обработки естественного языка (NLP), включающее в себя множество разнообразных задач на восприятие и интерпретацию видео. От базового распознавания предметов и объектов в видеоряде, локализации объектов в пространстве или во времени, подсчета предметов и людей, до генерации кратких или развернутых описаний видео и задач на рассуждения о причинах происходящего на видео, требующих глубокого понимания мира — от человеческой психологии до физических свойств объектов. 

Читать далее
Total votes 22: ↑22 and ↓0+33
Comments0

FAISS: Быстрый поиск лиц и клонов на многомиллионных данных

Reading time14 min
Views39K


Однажды в преддверии клиентской конференции, которую ежегодно проводит группа DAN, мы размышляли над тем, что интересного можно придумать, чтобы у наших партнеров и клиентов остались приятные впечатления и воспоминания о мероприятии. Мы решили разобрать архив из тысяч фотографий с этой конференции и нескольких прошлых (а всего их к тому моменту было 18): человек отправляет нам свою фотографию, а мы ему через пару секунд отправляем подборку фотографий с ним за несколько лет из наших архивов.

Велосипед мы не придумывали, взяли всем известную библиотеку dlib и получили эмбеддинги (векторные представления) каждого лица. 

Добавили Telegram-бота для удобства, и всё было отлично. С точки зрения алгоритмов распознавания лиц всё работало на ура, но конференция завершилась, а расставаться с опробованными технологиями не хотелось. От нескольких тысяч лиц хотелось перейти к сотням миллионов, но конкретной бизнес-задачи у нас не было. Через некоторое время у наших коллег появилась задача, которая требовала работы с такими большими объемами данных.
Читать дальше →
Total votes 14: ↑13 and ↓1+14
Comments15

Использование faiss для поиска по многомерным пространствам

Reading time7 min
Views12K

Привет! Меня зовут Владимир Олохтонов, я старший разработчик в команде автоматической модерации Авито. Осенью 2019 мы запустили сервис поиска похожих изображений на основе библиотеки faiss. Он помогает нам понимать, что фотографии уже встречались в другом объявлении, даже если они достаточно серьёзно искажены: размыты, обрезаны и тому подобное. Так мы определяем потенциально фейковые публикации.


Мне бы хотелось рассказать о тех проблемах, с которыми мы столкнулись в процессе создания этого сервиса, и наших подходах к их решению.


Читать дальше →
Total votes 31: ↑31 and ↓0+31
Comments22

ИИ без иллюзий. Развенчивание мифов

Level of difficultyEasy
Reading time5 min
Views33K

В своем подкасте я грозился сам почитать статью GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models ученых из Apple и разобраться. Почитал. Разобрался. Забавная статья. Забавная не по содержанию, а по выводам, которые можно сделать, если читать между строк и выйти за границы статьи.

Читать далее
Total votes 101: ↑78 and ↓23+65
Comments179
1
23 ...

Information

Rating
Does not participate
Location
Москва, Москва и Московская обл., Россия
Works in
Date of birth
Registered
Activity