Pull to refresh
23
0

AI preacher

Send message

Контрактная разработка электроники. Расчёт проекта

Reading time7 min
Views15K



Каждый месяц к нам приходят десятки заявок на разработку электроники. И каждый потенциальный заказчик желает узнать стоимость решения своей проблемы, вне зависимости от того, насколько хорошо он сам её понимает. Может ли контрактный разработчик угодить всем? Как заранее отсеять «бесперспективных»? Как оценить те проекты, которые имеют шансы на развитие? Об этом наша новая статья.
Читать дальше →

Настраиваем домашний почтовый сервер и уходим с «бесплатной» почты

Reading time15 min
Views366K

С каждым годом рекламы в интернете становится все больше, а подают ее с каждым разом все навязчивее. Дошло уже до почты: реклама в интерфейсе почтового ящика выглядит как первое непрочитанное письмо, которое машинально хочется открыть. Я не против рекламы, особенно когда она в тему и не сбивает с толку. Но маскировать её под непрочитанное письмо ‒ это перебор. Чувствуется, что следующим шагом рекламу начнут вставлять прямо в тело письма.

Читать далее

Телеграм бот для поддержки своими руками

Reading time6 min
Views103K

Представьте, что у вас есть свой канал в телеге. Допустим, вы высказываете непопулярную политическую точку зрения и, соответственно, ловите хейт в личку со стороны читателей и проходящих мимо. Или вы продаете что-то через свой канал, но клиентов так много, что один продажник не справляется.

Проблем много, а решение одно: сделать Телеграм бот, который будет работать посредником между вашими пользователями/клиентами и вашей командой поддержки.

Я расскажу, как запустить такого бота бесплатно в 1 клик, и поделюсь кодом.

Читать далее

Не царская у тебя физиономия! Функции потерь для задачи распознавания лиц

Reading time10 min
Views20K

Кадр из фильма "Иван Васильевич меняет профессию"


Помните этот момент из легендарного произведения Гайдая? Удивительно, насколько по-разному может восприниматься один и тот же человек с одним и тем же лицом. А когда речь идет о миллионах разных людей и нужно найти одного единственного — даже человек уже бессилен, а сверточные нейросети продолжают справляться. Такое большое количество лиц вынуждает искать новые подходы к разграничению. Один из таких подходов — модификации функций потерь, которые помогают нам не потонуть в огромных датасетах при распознавании лиц, довольно точно определяя, кто есть кто.


Под катом мы рассмотрим различные модификации кросс-энтропии для задачи распознавания лиц.

Читать дальше →

Ансамбли нейронных сетей с PyTorch и Sklearn

Reading time15 min
Views21K

Нейронные сети довольно популярны. Их главное преимущество в том, что они способны обобщать довольно сложные данные, на которых другие алгоритмы показывают низкое качество. Но что делать, если качество нейронной сети все еще неудовлетворительное?


И тут на помощь приходят ансамбли...


Что такое ансамбли


Ансамбль алгоритмов машинного обучения — это использование нескольких (не обязательно разных) моделей вместо одной. То есть сначала мы обучаем каждую модель, а затем объединяем их предсказания. Получается, что наши модели вместе образуют одну более сложную (в плане обобщающей способности — способности "понимать" данные) модель, которую часто называют метамоделью. Чаще всего метамодель обучается уже не на нашей первоначальной выборке данных, а на предсказаниях других моделей. Она как бы учитывает опыт всех моделей, и это позволяет уменьшить ошибки.

Читать дальше →

Автоматы и разумное поведение. Основные положения концепции (подхода) Н.М. Амосова

Reading time121 min
Views7.2K



В продолжении одной из тем, поднятых в публикации Александра Ершова (Ustas) «Нейросетевой визуальный поиск», предлагаю читателям Хабра погрузиться в мир концепции Н.М. Амосова, ее $i$-моделей, М-сетей и автоматов. Как я надеюсь, именно они — наиболее вероятные кандидаты на роль «серебряной пули», которая позволит энтузиастам «сильного интеллекта» или, в другой терминологии, «искусственного разума» приблизиться к пониманию путей его реализации.


В данной статье автор попытался предельно сжато (конспективно) изложить основные положения концепции Николая Михайловича Амосова. Этот подход достаточно детально изложен в коллективной монографии «Автоматы и разумное поведение. Опыт моделирования», авторами которой был Н.М. Амосов и его соратники: A.M. Касаткин, Л.М. Касаткина и С.А. Талаев. Могу сказать, что это единственная монография, из всех работ по теме «искусственного разума», с которыми я смог познакомиться до сегодняшнего дня, содержащая ясное, обстоятельное, всестороннее, систематическое и в тоже время убедительное, а, в отдельных местах — даже высокохудожественное (говорю это без малейшей доли иронии) — изложение теоретических основ авторской концепции «искусственного разума», а также полученных на ее основе экспериментальных результатов.


Обращаюсь ко всем, у кого есть задор, жгучий интерес к теме «искусственного разума», а также желание поближе познакомиться с подходом Н.М. Амосова — читайте дальше...

Читать дальше →

37 причин, почему ваша нейросеть не работает

Reading time9 min
Views44K
Сеть обучалась последние 12 часов. Всё выглядело хорошо: градиенты стабильные, функция потерь уменьшалась. Но потом пришёл результат: все нули, один фон, ничего не распознано. «Что я сделал не так?», — спросил я у компьютера, который промолчал в ответ.

Почему нейросеть выдаёт мусор (например, среднее всех результатов или у неё реально слабая точность)? С чего начать проверку?

Сеть может не обучаться по ряду причин. По итогу многих отладочных сессий я заметил, что часто делаю одни и те же проверки. Здесь я собрал в удобный список свой опыт вместе с лучшими идеями коллег. Надеюсь, этот список будет полезен и вам.
Читать дальше →

Чего не хватает ИИ?

Reading time3 min
Views7.7K
Это пост-вопрос, в нем я попробовал сформулировать основные проблемы нейросетей, решение которых может сделать прорыв в технологии ИИ. В основном речь о сетях, что работают с текстом (GPT, BERT, ELMO и т.п.). Как известно, хорошая формулировка задачи — половина ее решения. Но сам я эти решения найти не могу. Надеюсь на «помощь зала», так как тут много тех, кто сталкивается с такими же проблемами и возможно «видит» их решение.

Итак.

1. Самое казалось бы простое, но нейросеть не учитывает факты. Нейросеть выучивается на частных фактах, но как бы не знает о них. На когнитивном языке NN обладает семантической, а не эпизодической памятью грубо говоря.
Читать дальше →

Лучшие инструменты с открытым исходным кодом и библиотеки для Deep Learning — ICLR 2020 Experience

Reading time13 min
Views10K
Сложно найти на Хабре человека, который не слышал бы про нейронные сети. Регулярные новости о свежих достижениях нейронных сетей заставляют удивляться широкую публику, а также привлекают новых энтузиастов и исследователей. Привлеченный поток специалистов способствует не только еще большим успехам нейронных моделей, но и приводит к развитию инструментов для более удобного использования Deep Learning подходов. Помимо всем известных фреймворков Tensorflow и PyTorch активно развиваются и другие библиотеки, нередко более гибкие, но менее известные. 

Эта статья является переводом одного из постов neptune.ai и освещает самые интересные инструменты для глубокого обучения, представленные на конференции по машинному обучения ICLR 2020. 

Читать дальше →

Как писать музыку на Python — помогут три тематические библиотеки (для специалистов разного уровня)

Reading time3 min
Views20K
Продолжаем тему музыкального программирования — ранее мы говорили о языках Csound, SuperCollider и Pure Data, а сегодня рассказываем Python и библиотеках FoxDot, Pippi и Music-Code.

World Models — обучение в воображении

Reading time10 min
Views5.6K

Обучение с подкреплением (Reinforcement Learning) плохо, а точнее, совсем не работает с высокими размерностями. А также сталкивается с проблемой, что физические симуляторы довольно медленные. Поэтому в последнее время стал популярен способ обойти эти ограничения с помощью обучения отдельной нейросети, которая имитирует физический движок. Получается что-то вроде аналога воображения, в котором и происходит дальнейшее основное обучение.


Давайте посмотрим, какой прогресс достигнут в этой сфере и рассмотрим основные архитектуры.

Читать дальше →

Особенности Jupyter Notebook, о которых вы (может быть) не слышали

Reading time10 min
Views372K
Jupyter Notebook – это крайне удобный инструмент для создания красивых аналитических отчетов, так как он позволяет хранить вместе код, изображения, комментарии, формулы и графики:



Ниже мы расскажем о некоторых фишках, которые делают Jupyter очень крутым. О них можно прочитать и в других местах, но если специально не задаваться этим вопросом, то никогда и не прочитаешь.
Читать дальше →

Ваш первый BERT: иллюстрированное руководство

Reading time8 min
Views44K

bert-distilbert-sentence-classification


Прогресс в области машинного обучения для обработки естественного языка существенно ускорился за последние несколько лет. Модели покинули исследовательские лаборатории и стали основой ведущих цифровых продуктов. Хорошей иллюстрацией этому служит недавнее заявление о том, что основным компонентом, стоящим за поиском Google, стала модель BERT. Google верит, что этот шаг (т.е. внедрение передовой модели понимания естественного языка в поисковую систему) представляет собой «величайший прорыв за последние пять лет и один из знаменательнейших во всей истории поисковых систем».


Данная статья – это простое руководство по использованию одной из версий BERT'а для классификации предложений. Пример, рассмотренный нами, одновременно и достаточно простой для первого знакомства с моделью, и достаточно продвинутый для того, чтобы продемонстрировать ключевые концепты.


Помимо этой статьи был подготовлен ноутбук, который можно посмотреть в репозитории или запустить в Colab.

Читать дальше →

BERT, ELMO и Ко в картинках (как в NLP пришло трансферное обучение)

Reading time11 min
Views52K

2018 год стал переломной точкой для развития моделей машинного обучения, направленных на решение задач обработки текста (или, что более корректно, обработки естественного языка (Natural Language Processing, NLP)). Быстро растет концептуальное понимание того, как представлять слова и предложения для наиболее точного извлечения их смысловых значений и отношений между ними. Более того, NLP-сообщество продвигает невероятно мощные инструменты, которые можно бесплатно скачать и использовать в своих моделях и пайплайнах. Эту переломную точку также называют NLP’s ImageNet moment, ссылаясь на тот момент несколько лет назад, когда схожие разработки значительно ускорили развитие машинного обучения в области задач компьютерного зрения.


transformer-ber-ulmfit-elmo


(ULM-FiT не имеет ничего общего с Коржиком, но что-то лучше не пришло в голову)

Читать дальше →

Word2vec в картинках

Reading time14 min
Views156K


«Во всякой вещи скрыт узор, который есть часть Вселенной. В нём есть симметрия, элегантность и красота — качества, которые прежде всего схватывает всякий истинный художник, запечатлевающий мир. Этот узор можно уловить в смене сезонов, в том, как струится по склону песок, в перепутанных ветвях креозотового кустарника, в узоре его листа.

Мы пытаемся скопировать этот узор в нашей жизни и нашем обществе и потому любим ритм, песню, танец, различные радующие и утешающие нас формы. Однако можно разглядеть и опасность, таящуюся в поиске абсолютного совершенства, ибо очевидно, что совершенный узор — неизменен. И, приближаясь к совершенству, всё сущее идёт к смерти» — Дюна (1965)

Я считаю, что концепция вложений (embeddings) — одна из самых замечательных идей в машинном обучении. Если вы когда-нибудь использовали Siri, Google Assistant, Alexa, Google Translate или даже клавиатуру смартфона с предсказанием следующего слова, то уже работали с моделью обработки естественного языка на основе вложений. За последние десятилетия произошло значительное развитие этой концепции для нейронных моделей (последние разработки включают контекстуализированные вложения слов в передовых моделях, таких как BERT и GPT2).
Читать дальше →

BERT — state-of-the-art языковая модель для 104 языков. Туториал по запуску BERT локально и на Google Colab

Reading time11 min
Views134K

image


BERT — это нейронная сеть от Google, показавшая с большим отрывом state-of-the-art результаты на целом ряде задач. С помощью BERT можно создавать программы с ИИ для обработки естественного языка: отвечать на вопросы, заданные в произвольной форме, создавать чат-ботов, автоматические переводчики, анализировать текст и так далее.


Google выложила предобученные модели BERT, но как это обычно и бывает в Machine Learning, они страдают от недостатка документации. Поэтому в этом туториале мы научимся запускать нейронную сеть BERT на локальном компьютере, а также на бесплатном серверном GPU на Google Colab.

Читать дальше →

Методология IDEF5. Графический язык

Reading time6 min
Views11K

Вступление


Данная статья предназначена для тех, кто знаком с таким понятием как онтология хотя бы на начальном уровне. Если Вы не знакомы с онтологиями, то, скорее всего, Вам будет не ясна цель онтологий и данной статьи в частности. Советую ознакомиться с данным явлением, прежде чем начать чтение данной статьи (возможно хватит даже статьи с Википедии).

Итак Онтология — это детальная характеристика некой рассматриваемой предметной области. Такая характеристика должна быть дана на каком-либо четко сформулированном языке. Для описания онтологий можно использовать методологию IDEF5, которая имеет в своем арсенале 2 языка:

  • Схематический язык IDEF5. Этот язык является визуальным и использует графические элементы.
  • Текстовый язык IDEF5. Этот язык представляется в виде структурированного текста.

В данной статье будет рассмотрен первый вариант — схематический язык. О текстовом поговорим в следующих статьях.
Читать дальше →

Machine Learning. Курс от Яндекса для тех, кто хочет провести новогодние каникулы с пользой

Reading time8 min
Views266K
Новогодние каникулы – хорошее время не только для отдыха, но и для самообразования. Можно отвлечься от повседневных задач и посвятить несколько дней тому, чтобы научиться чему-нибудь новому, что будет помогать вам весь год (а может и не один). Поэтому мы решили в эти выходные опубликовать серию постов с лекциями курсов первого семестра Школы анализа данных.

Сегодня — о самом важном. Современный анализ данных без него представить невозможно. В рамках курса рассматриваются основные задачи обучения по прецедентам: классификация, кластеризация, регрессия, понижение размерности. Изучаются методы их решения, как классические, так и новые, созданные за последние 10–15 лет. Упор делается на глубокое понимание математических основ, взаимосвязей, достоинств и ограничений рассматриваемых методов. Отдельные теоремы приводятся с доказательствами.



Читает курс лекций Константин Вячеславович Воронцов, старший научный сотрудник Вычислительного центра РАН. Заместитель директора по науке ЗАО «Форексис». Заместитель заведующего кафедрой «Интеллектуальные системы» ФУПМ МФТИ. Доцент кафедры «Математические методы прогнозирования» ВМиК МГУ. Эксперт компании «Яндекс». Доктор физико-математических наук.
Содержание и видео всех лекций курса

Пару слов о распознавании образов

Reading time13 min
Views314K
Давно хотел написать общую статью, содержащую в себе самые основы Image Recognition, некий гайд по базовым методам, рассказывающий, когда их применять, какие задачи они решают, что возможно сделать вечером на коленке, а о чём лучше и не думать, не имея команды человек в 20.
image

Какие-то статьи по Optical Recognition я пишу давненько, так что пару раз в месяц мне пишут различные люди с вопросами по этой тематике. Иногда создаётся ощущение, что живёшь с ними в разных мирах. С одной стороны понимаешь, что человек скорее всего профессионал в смежной теме, но в методах оптического распознавания знает очень мало. И самое обидное, что он пытается применить метод из близрасположенной области знаний, который логичен, но в Image Recognition полностью не работает, но не понимает этого и сильно обижается, если ему начать рассказывать что-нибудь с самых основ. А учитывая, что рассказывать с основ — много времени, которого часто нет, становится всё ещё печальнее.
Распознать

Огромный открытый датасет русской речи

Reading time3 min
Views37K
image

Специалистам по распознаванию речи давно не хватало большого открытого корпуса устной русской речи, поэтому только крупные компании могли позволить себе заниматься этой задачей, но они не спешили делиться своими наработками.

Мы торопимся исправить это годами длящееся недоразумение.

Итак, мы предлагаем вашему вниманию набор данных из 4000 часов аннотированной устной речи, собранный из различных интернет-источников.

Подробности под катом.
Читать дальше →

Information

Rating
Does not participate
Location
Москва и Московская обл., Россия
Registered
Activity