Привет.
Читаю книгу Mahout in Action. Столкнулся с эффектом “смотрю в книгу – вижу фигу”. Для его устранения решил конспектировать.
Apache Mahout – это библиотека для работы с алгоритмами машинного обучения, которая может быть использована как надстройка к Hadoop или самостоятельно. В библиотеке реализованы методы коллаборативной фильтрации, кластеризации и классификации.
Рассматриваем рекомендательную систему на основе коллаборатвной фильтрации. Она может быть пользователе-ориентированной (user-based) или свойство-ориентированной (item-based).
Одно из основных понятий пользователе-ориентированных рекомендательных систем это метрика для определения схожести пользователей. Предположим что мы имеем данные по просмотрам и оценкам фильмов разными пользователями. Будем сравнивать двух пользователей: X и Y. Они выставили оценки фильмам X(x1, x2, ..., xn) и Y(y1, y2, ..., ym), где n, m – количество оценок поставленных первым и вторым пользователем соответственно. N – количество оценок, которые были поставленны обоими пользователями одним и тем же фильмам (пересечение множеств фильмов посмотренных первым и вторым). Будем считать что (xi, yi) – это пара оценок выставленная пользователями одному фильму.
В Mahout реализованы метрики на основании нескольких алгоритмов. Описываю сами алгоритмы, а не их реализации в Mahout.
Читаю книгу Mahout in Action. Столкнулся с эффектом “смотрю в книгу – вижу фигу”. Для его устранения решил конспектировать.
Apache Mahout – это библиотека для работы с алгоритмами машинного обучения, которая может быть использована как надстройка к Hadoop или самостоятельно. В библиотеке реализованы методы коллаборативной фильтрации, кластеризации и классификации.
Рассматриваем рекомендательную систему на основе коллаборатвной фильтрации. Она может быть пользователе-ориентированной (user-based) или свойство-ориентированной (item-based).
Коллаборативная фильтрация — это один из методов построения прогнозов, использующий известные предпочтения (оценки) группы пользователей для прогнозирования неизвестных предпочтений другого пользователя. Его основное допущение состоит в следующем: те, кто одинаково оценивали какие-либо предметы в прошлом, склонны давать похожие оценки другим предметам и в будущем. (из википедии)
Одно из основных понятий пользователе-ориентированных рекомендательных систем это метрика для определения схожести пользователей. Предположим что мы имеем данные по просмотрам и оценкам фильмов разными пользователями. Будем сравнивать двух пользователей: X и Y. Они выставили оценки фильмам X(x1, x2, ..., xn) и Y(y1, y2, ..., ym), где n, m – количество оценок поставленных первым и вторым пользователем соответственно. N – количество оценок, которые были поставленны обоими пользователями одним и тем же фильмам (пересечение множеств фильмов посмотренных первым и вторым). Будем считать что (xi, yi) – это пара оценок выставленная пользователями одному фильму.
В Mahout реализованы метрики на основании нескольких алгоритмов. Описываю сами алгоритмы, а не их реализации в Mahout.