Обновить
0
0
Андрей Асеев@bsdw

Пользователь

Отправить сообщение

Как ELK довел нас… до Vector.dev и Clickhouse

Уровень сложностиСложный
Время на прочтение7 мин
Охват и читатели18K

Меня зовут Дима Синявский, я SRE-инженер в Vi.Tech — это IT-дочка ВсеИнструменты.ру. В этой статье расскажу я вам о том как мы развивались и с нами развивалась наша система логирования. Почему вам нужен Vector.dev + Clickhouse для хранения и когда это выгодно.

Когда компания была маленькой нам хватало и блокнота, чего сейчас уже не скажешь.
У нас 931 000 пайплайнов в месяц, 4 кластера Kubernetes: от 170 до 190 нод в каждом, и 200 ГБ логов ежедневно.

cat elk-vector.md | more // Прочитать...

Немного внутренностей словарей в CPython (и PyPy)

Время на прочтение9 мин
Охват и читатели78K
Внутреннее устройство словарей в Python не ограничивается одними лишь бакетами и закрытым хешированием. Это удивительный мир разделяемых ключей, кеширования хешей, DKIX_DUMMY и быстрого сравнения, которое можно сделать ещё быстрее (ценой бага с примерной вероятностью в 2^-64).

Если вы не знаете количество элементов в только что созданном словаре, сколько памяти расходуется на каждый элемент, почему теперь (CPython 3.6 и далее) словарь реализован двумя массивами и как это связано с сохранением порядка вставки, или просто не смотрели презентацию Raymond Hettinger «Modern Python Dictionaries A confluence of a dozen great ideas». Тогда добро пожаловать.


Впрочем, люди знакомые с лекцией, тоже могут найти немного подробностей и свежей информации, и для совсем новичков, не знакомых с бакетами и закрытым хешированием, статья тоже будет интересна.

Вышел uvloop — продвинутая реализация цикла событий для asyncio в Python

Время на прочтение1 мин
Охват и читатели48K
В стандартной библиотеке Python 3.4 в своё время появился модуль asyncio, позволивший удобно и быстро писать асинхронный код. А уже к Python 3.5 в синтаксис были добавлены конструкции async/await, окончательно оформившие асинхронность «из коробки» как красивую и гармоничную часть языка.



Хотя asyncio сам по себе и позволяет писать высоконагруженные веб-приложения, оптимизация производительности не была приоритетом при создании модуля.

Один из авторов упомянутого PEP-492 (async/await) Юрий Селиванов (на Хабре — 1st1, его твиттер) взялся за разработку альтернативной реализации цикла событий для asyncio — uvloop. Вчера вышла первая альфа-версия модуля, о чём автор написал развёрнутый пост.

Если вкратце, то uvloop работает примерно в 2 раза быстрее Node.js и практически не уступает программам на Go.
Под катом небольшая выжимка из записи в блоге

Система непересекающихся множеств и её применения

Время на прочтение10 мин
Охват и читатели88K
Добрый день, Хабрахабр. Это еще один пост в рамках моей программы по обогащению базы данных крупнейшего IT-ресурса информацией по алгоритмам и структурам данных. Как показывает практика, этой информации многим не хватает, а необходимость встречается в самых разнообразных сферах программистской жизни.
Я продолжаю преимущественно выбирать те алгоритмы/структуры, которые легко понимаются и для которых не требуется много кода — а вот практическое значение сложно недооценить. В прошлый раз это было декартово дерево. В этот раз — система непересекающихся множеств. Она же известна под названиями disjoint set union (DSU) или Union-Find.

Условие


Поставим перед собой следующую задачу. Пускай мы оперируем элементами N видов (для простоты, здесь и далее — числами от 0 до N-1). Некоторые группы чисел объединены в множества. Также мы можем добавить в структуру новый элемент, он тем самым образует множество размера 1 из самого себя. И наконец, периодически некоторые два множества нам потребуется сливать в одно.

Формализируем задачу: создать быструю структуру, которая поддерживает следующие операции:

MakeSet(X) — внести в структуру новый элемент X, создать для него множество размера 1 из самого себя.
Find(X) — возвратить идентификатор множества, которому принадлежит элемент X. В качестве идентификатора мы будем выбирать один элемент из этого множества — представителя множества. Гарантируется, что для одного и того же множества представитель будет возвращаться один и тот же, иначе невозможно будет работать со структурой: не будет корректной даже проверка принадлежности двух элементов одному множеству if (Find(X) == Find(Y)).
Unite(X, Y) — объединить два множества, в которых лежат элементы X и Y, в одно новое.

На рисунке я продемонстрирую работу такой гипотетической структуры.


Как такое сделать и зачем оно нужно

Свой асинхронный tcp-сервер за 15 минут с подробным разбором

Время на прочтение7 мин
Охват и читатели90K

Ранее я представил пару небольших постов о потенциальной роли Spring Boot 2 в реактивном программировании. После этого я получил ряд вопросов о том, как работают асинхронные операции в программировании в целом. Сегодня я хочу разобрать, что такое Non-blocking I/O и как применить это знание для создания небольшого tcp–сервера на python, который сможет обрабатывать множество открытых и тяжелых (долгих) соединений в один поток. Знание python не требуется: все будет предельно просто со множеством комментариев. Приглашаю всех желающих!
Читать дальше →

Пулы потоков: ускоряем NGINX в 9 и более раз

Время на прочтение15 мин
Охват и читатели92K
Как известно, для обработки соединений NGINX использует асинхронный событийный подход. Вместо того, чтобы выделять на каждый запрос отдельный поток или процесс (как это делают серверы с традиционной архитектурой), NGINX мультиплексирует обработку множества соединений и запросов в одном рабочем процессе. Для этого применяются сокеты в неблокирующем режиме и такие эффективные методы работы с событиями, как epoll и kqueue.

За счет малого и постоянного количества полновесных потоков обработки (обычно по одному на ядро) достигается экономия памяти, а также ресурсов процессора на переключении контекстов. Все преимущества данного подхода вы можете хорошо наблюдать на примере самого NGINX, который способен обрабатывать миллионы запросов одновременно и хорошо масштабироваться.

Каждый процесс расходует память и каждое переключение между ними требует дополнительных циклов процессора, а также приводит к вымыванию L-кэшей

У медали есть и обратная сторона. Главной проблемой асинхронного подхода, а лучше даже сказать «врагом» — являются блокирующие операции. И, к сожалению, многие авторы сторонних модулей, не понимая принципов функционирования NGINX, пытаются выполнять блокирующие операции в своих модулях. Такие операции способны полностью убить производительность NGINX и их следует избегать любой ценой.

Но даже в текущей реализации NGINX не всегда возможно избежать блокировок. И для решения данной проблемы в NGINX версии 1.7.11 был представлен новый механизм «пулов потоков». Что это такое и как его применять разберем далее, а для начала познакомимся с нашим врагом в лицо.
Читать дальше →

Разница между nginx и apache с примерами

Время на прочтение26 мин
Охват и читатели111K

Во время собеседований на роль linux/unix администратора во многих IT-компаниях спрашивают, что такое load average, чем nginx отличается от apache httpd и что такое fork. В этой статье я постараюсь объяснить, что рассчитывают услышать в ответ на эти вопросы, и почему.


Здесь важно очень хорошо понимать основы администрирования. В идеальной ситуации при постановке задачи системному администратору выставляют ряд требований. Если же ситуация не идеальная, то, по сути, требование к администратору одно: «Хочу, чтобы всё работало». Иными словами, сервис должен быть доступен 24/7 и, если какое-то решение не удовлетворяет этим требованиям (масштабирование и отказоустойчивость относятся к доступности), то можно сказать, что администратор плохо сделал свою работу. Но если разные решения двух администраторов работают 24/7, как понять, какое из них лучше?


Хороший системный администратор при выборе решения при заданных требованиях ориентируется на два условия: минимальное потребление ресурсов и их сбалансированное распределение.


Вариант, когда одному специалисту нужно 10 серверов для выполнения задания, а второму всего 2, мы рассматривать не будем, что тут лучше – очевидно. Далее под ресурсами я буду понимать ЦПУ (cpu), ОЗУ (ram) и диск (hdd).


Давайте рассмотрим ситуацию: один администратор создал решение, которое требует 10% cpu, 5% ram и 10% hdd от всего вашего оборудования, а второй использовал для этого 1% cpu, 40% ram и 20% hdd. Какое из этих решений лучше? Тут все становится уже не так очевидно. Поэтому хороший администратор всегда должен уметь грамотно подобрать решение, исходя из имеющихся ресурсов.


Читать дальше →

Неразбериха с Boeing 737 MAX: анализ возможных причин аварий

Время на прочтение40 мин
Охват и читатели74K
image

«Столкновение с землёй в управляемом полёте» (Controlled Flight into Terrain) — это авиационный термин, обозначающий аварию нормально функционирующего самолёта из-за того, что пилоты были чем-то отвлечены или дезориентированы. Настоящий кошмар. По моим оценкам, ещё хуже столкновение с землёй в автоматизированном полёте, когда система управления самолётом заставляет его совершать пикирование в землю, несмотря на отчаянные попытки экипажа спасти ситуацию. Такова предполагаемая причина двух недавних аварий новых самолётов Boeing 737 MAX 8. Я попытался разобраться, как могли произойти эти инциденты.

Примечание: изучение катастроф MAX 8 находится на раннем этапе, поэтому многое из статьи основано на данных из непрямых источников, другими словами, на утечках и слухах, а также на рассуждениях тех людей, которые знают или не знают, о чём говорят. Так что учитывайте это, если решите продолжить чтение.

Аварии


Ранним утром 29 октября 2018 года рейс 610 авиакомпании Lion Air вылетел из Джакарты (Индонезия) с 189 людьми на борту. Это был новый, эксплуатировавшийся всего четыре месяца 737 MAX 8 — последняя модель линейки самолётов Boeing, созданной ещё в 1960-х. Взлёт и подъём до высоты примерно 1 600 футов (480 метров) был нормальным, после чего пилоты убрали закрылки (элементы крыла, повышающие подъёмную силу при малых скоростях). В этот момент воздушное судно неожиданно снизилось до 900 футов (270 метров). В радиопереговорах с авиадиспетчерами пилоты сообщали о «проблеме с системой управления» и спрашивали данные о своей высоте и скорости, отображаемых на экранах радаров диспетчеров.
Читать дальше →

Асинхронность в программировании

Время на прочтение26 мин
Охват и читатели113K

В области разработки высоконагруженных многопоточных или распределенных приложений часто возникают дискуссии об асинхронном программировании. Сегодня мы подробно погрузимся в асинхронность и изучим, что это такое, когда она возникает, как влияет на код и язык программирования, которым мы пользуемся. Разберемся, зачем нужны Futures и Promises и затронем корутины и операционные системы. Это сделает компромиссы, возникающие во время разработки ПО, более явными.


В основе материала — расшифровка доклада Ивана Пузыревского, преподавателя школы анализа данных Яндекса.


Читать дальше →

Знай сложности алгоритмов

Время на прочтение2 мин
Охват и читатели1.1M
Эта статья рассказывает о времени выполнения и о расходе памяти большинства алгоритмов используемых в информатике. В прошлом, когда я готовился к прохождению собеседования я потратил много времени исследуя интернет для поиска информации о лучшем, среднем и худшем случае работы алгоритмов поиска и сортировки, чтобы заданный вопрос на собеседовании не поставил меня в тупик. За последние несколько лет я проходил интервью в нескольких стартапах из Силиконовой долины, а также в некоторых крупных компаниях таких как Yahoo, eBay, LinkedIn и Google и каждый раз, когда я готовился к интервью, я подумал: «Почему никто не создал хорошую шпаргалку по асимптотической сложности алгоритмов? ». Чтобы сохранить ваше время я создал такую шпаргалку. Наслаждайтесь!
Читать дальше →

Поиск с помощью регулярных выражений может быть простым и быстрым

Время на прочтение21 мин
Охват и читатели50K
В этой статье мы рассмотрим два способа поиска с помощью регулярных выражений. Один широко распространён и используется в стандартных интерпретаторах многих языков. Второй мало где применяется, в основном в реализациях awk и grep. Оба подхода сильно различаются по своей производительности:



В первом случае поиск занимает A?nAn времени, во втором — An.

Степени обозначают повторяемость строк, то есть A?3A3 — это то же самое, что и A?A?A?AAA. Графики отражают время, требуемое для поиска через регулярные выражения.

Обратите внимание, что в Perl для поиска строки из 29 символов требуется более 60 секунд. А при втором методе — 20 микросекунд. Это не ошибка. При поиске 29-символьной строки Thompson NFA работает примерно в миллион раз быстрее. Если нужно найти 100-символьную строку, то Thompson NFA справится менее чем за 200 микросекунд, а Perl понадобится более 1015 лет. Причём он взят лишь для примера, во многих других языках наблюдается та же картина — в Python, PHP, Ruby и т. д. Ниже мы рассмотрим этот вопрос более детально.

Наверняка вам трудно поверить приведённым данным. Если вы работали с Perl, то вряд ли подмечали за ним низкую производительность при работе с регулярными выражениями. Дело в том, что в большинстве случаев Perl обращается с ними достаточно быстро. Однако, как следует из графика, можно столкнуться с так называемыми патологическими регулярными выражениями, на которых Perl начинает буксовать. В то же время у Thompson NFA такой проблемы нет.

Возникает логичный вопрос: а почему бы в Perl не использовать метод Thompson NFA? Это возможно и следует делать, и об этом пойдёт далее речь.
Читать дальше →

Майкл Стоунбрейкер — Hadoop на распутье

Время на прочтение11 мин
Охват и читатели18K
[@tsafin — Обладателя премии Тьюринга Майкла Стоунбрейкера представлять не надо, он и его студенты из Беркли и MIT создали, по ощущениям, большую часть реляционных и нереляционных баз данных за последние пару десятилетий. Ingres и Postgres, C-Store и Vertica, H-Store и VoltDB – вот лишь малая часть проектов и фирм, на который Майкл и его студенты повлияли напрямую, а ведь еще есть множество форков и деривативов…

Т.о. когда он критикует что-то, будь то NoSQL или Hadoop, то индустрии стоит, как минимум, прислушаться, а лучше попытаться измениться.

Мне показалось интересной его точка зрения на Hadoop, высказанная в статьях 2012 и 2014 года, и было интересно проследить развитие точки зрения «классика» за такой короткий промежуток времени.

Первую статью «Possible Hadoop Trajectories», опубликованную в «Comunications of ACM» http://cacm.acm.org/blogs/blog-cacm/149074-possible-hadoop-trajectories/fulltext, Стоунбрейкер написал в мае 2012 года в соавторстве с Джереми Кепнером (Jeremy Kepner), который в тот момент работал как старший технический персонал в MIT, и как исследователь в MIT Mathematics Department и MIT Computer Science and AI Lab. Эта статья, написанная в соавторстве, кажется более дерзкой и задорной, по сравнению со второй, написанной уже им самим двумя годами позже (да и, чего уж там, первая статья написана IMHO в лучшем стиле), но я публикую их в связке, т.к. контекст за прошедшие пару лет сильно изменился, и было бы нечестно по отношению к экосистеме Hadoop/HDFS оставлять это незамеченным.
Читать дальше →

Эра NoSQL позади

Время на прочтение5 мин
Охват и читатели55K

Новый тренд на HighLoad++ — множество докладов об использовании оперативной памяти. Слово Константину Осипову, разработчику платформы Tarantool, автору доклада «Что особенного в СУБД для данных в оперативной памяти».

Ты отвечал в MySQL за производительность, как так получилось, что ты решил разрабатывать свою СУБД?
В MySQL я руководил одной из команд разработки сервера, за производительность там отвечали все.

MySQL по многим параметрам был работой мечты, но, к сожалению после того, как мы стали частью Oracle, многое изменилось.

Несколько моих коллег ушли в MariaDB, кто-то основал свою компанию (SeveralNines, FromDual). Я никогда не чувствовал себя «недогруженным», а с уходом многих ключевых разработчиков работа вообще превратилась в марафон по передаче знаний. Сопротивление поглощению, желание начать всё с чистого листа, бунт против медленного принятия решений большой компанией, нежелание по разным причинам уезжать в США, в конце концов, хорошее предложение от Mail.Ru, которому к этому моменту уже было около года — и я ушёл.

Если бы знал, куда ухожу, ещё десять раз подумал бы. Иногда вообще не было веры, что удастся сделать что-то полезное, чем будут пользоваться за пределами Mail.Ru, да и сейчас Tarantool очень далёк пока от «идеальной СУБД».
Читать дальше →

Дюк, вынеси мусор! — 1. Введение

Время на прочтение13 мин
Охват и читатели261K


Наверняка вы уже читали не один обзор механизмов сборки мусора в Java и настройка таких опций, как Xmx и Xms, превратилась для вас в обычную рутину. Но действительно ли вы в деталях понимаете, что происходит под капотом вашей виртуальной машины в тот момент, когда приходит время избавиться от ненужных объектов в памяти и ваш идеально оптимизированный метод начинает выполняться в несколько раз дольше положенного? И знаете ли вы, какие возможности предоставляют вам последние версии Java для оптимизации ответственной работы по сборке мусора, зачастую сильно влияющей на производительность вашего приложения?

Попробуем в нескольких статьях пройти путь от описания базовых идей, лежащих в основе всех сборщиков мусора, до разбора алгоритмов работы и возможностей тонкой настройки различных сборщиков Java HotSpot VM (вы ведь знаете, что таких сборщиков четыре?). И самое главное, рассмотрим, каким образом эти знания можно использовать на практике.
Узнать

19 советов по повседневной работе с Git

Время на прочтение14 мин
Охват и читатели292K


Если вы регулярно используете Git, то вам могут быть полезны практические советы из этой статьи. Если вы в этом пока новичок, то для начала вам лучше ознакомиться с Git Cheat Sheet. Скажем так, данная статья предназначена для тех, у кого есть опыт использования Git от трёх месяцев. Осторожно: траффик, большие картинки!

Содержание:
  1. Параметры для удобного просмотра лога
  2. Вывод актуальных изменений в файл
  3. Просмотр изменений в определённых строках файла
  4. Просмотр ещё не влитых в родительскую ветку изменений
  5. Извлечение файла из другой ветки
  6. Пара слов о ребейзе
  7. Сохранение структуры ветки после локального мержа
  8. Исправление последнего коммита вместо создания нового
  9. Три состояния в Git и переключение между ними
  10. Мягкая отмена коммитов
  11. Просмотр диффов для всего проекта (а не по одному файлу за раз) с помощью сторонних инструментов
  12. Игнорирование пробелов
  13. Добавление определённых изменений из файла
  14. Поиск и удаление старых веток
  15. Откладывание изменений определённых файлов
  16. Хорошие примечания к коммиту
  17. Автодополнения команд Git
  18. Создание алиасов для часто используемых команд
  19. Быстрый поиск плохого коммита

Читать дальше →

Как работает реляционная БД

Время на прочтение51 мин
Охват и читатели581K
Реляционные базы данных (РБД) используются повсюду. Они бывают самых разных видов, от маленьких и полезных SQLite до мощных Teradata. Но в то же время существует очень немного статей, объясняющих принцип действия и устройство реляционных баз данных. Да и те, что есть — довольно поверхностные, без особых подробностей. Зато по более «модным» направлениям (большие данные, NoSQL или JS) написано гораздо больше статей, причём куда более глубоких. Вероятно, такая ситуация сложилась из-за того, что реляционные БД — вещь «старая» и слишком скучная, чтобы разбирать её вне университетских программ, исследовательских работ и книг.

На самом деле, мало кто действительно понимает, как работают реляционные БД. А многие разработчики очень не любят, когда они чего-то не понимают. Если реляционные БД используют порядка 40 лет, значит тому есть причина. РБД — штука очень интересная, поскольку в ее основе лежат полезные и широко используемые понятия. Если вы хотели бы разобраться в том, как работают РБД, то эта статья для вас.
Читать дальше →

MapReduce 2.0. Какой он современный цифровой слон?

Время на прочтение10 мин
Охват и читатели30K


Если ты ИТшник, то нельзя просто так взять и выйти на работу 2-го января: пересмотреть 3-ий сезон битвы экстрасенсов или запись программы «Гордон» на НТВ (дело умственных способностей вкуса).
Нельзя потому, что у других сотрудников обязательно будут для тебя подарки: у секретарши закончился кофе, у МП — закончились дедлайны, а у администратора баз данных — амнезия память.
Оказалось, что инженеры из команды Hadoop тоже любят побаловать друг друга новогодними сюрпризами.

2008


2 января. Упуская подробное описание эмоционально-психологического состояния лиц, участвующих в описанных ниже событиях, сразу перейду к факту: поставлен таск MAPREDUCE-279 «Map-Reduce 2.0». Оставив шутки про число, обращу внимание, что до 1-ой стабильной версии Hadoop остается чуть менее 4 лет.

За это время проект Hadoop пройдет эволюцию из маленького инновационного снежка, запущенного в 2005, в большой снежный com ком, надвигающийся на ИТ, в 2012.
Ниже мы предпримем попытку разобраться, какое же значение январский таск MAPREDUCE-279 играл (и, уверен, еще сыграет в 2013) в эволюции платформы Hadoop.
...

Как за месяц сильно прокачаться в Data Science

Время на прочтение12 мин
Охват и читатели44K
Привет, хабр!



Меня зовут Глеб, я долгое время работаю в ритейловой аналитике и сейчас занимаюсь применением машинного обучения в данной области. Не так давно я познакомился с ребятами из MLClass.ru, которые за очень короткий срок довольно сильно прокачали меня в области Data Science. Благодаря им, буквально за месяц я стал активно сабмитить на kaggle. Поэтому данная серия публикаций будет описывать мой опыт изучения Data Science: все ошибки, которые были допущены, а также ценные советы, которые мне передали ребята. Сегодня я расскажу об опыте участия в соревновании The Analytics Edge (Spring 2015). Это моя первая статья — не судите строго.
Читать дальше →

Краткая история масштабирования LinkedIn

Время на прочтение9 мин
Охват и читатели27K
Примечание переводчика: Мы в «Латере» занимаемся созданием биллинга для операторов связи. Мы будем писать об особенностях системы и деталях ее разработки в нашем блоге на Хабре (например, об обеспечении отказоустойчивости), но почерпнуть что-то интересное можно и из опыта других компаний. Сегодня мы представляем вашему вниманию адаптированный перевод заметки главного инженера LinkedIn Джоша Клемма о процессе масштабирования инфраструктуры социальной сети.



Сервис LinkedIn был запущен в 2003 году с целью создания и поддержания сети деловых контактов и расширения возможностей поиска работы. За первую неделю в сети зарегистрировалось 2 700 человек. Спустя несколько лет число продуктов, клиентская база и нагрузка на серверы заметно выросли.

Сегодня в LinkedIn насчитывается более 350 миллионов пользователей по всему миру. Мы проверяем десятки тысяч веб-страниц каждую секунду, каждый день. На мобильные устройства сейчас приходится более 50% нашего трафика по всему миру. Пользователи запрашивают данные из наших бэкенд-систем, которые, в свою очередь, обрабатывают по несколько миллионов запросов в секунду. Как же мы этого добились?
Читать дальше →

Тюним память и сетевой стек в Linux: история перевода высоконагруженных серверов на свежий дистрибутив

Время на прочтение10 мин
Охват и читатели100K
image

До недавнего времени в Одноклассниках в качестве основного Linux-дистрибутива использовался частично обновлённый OpenSuSE 10.2. Однако, поддерживать его становилось всё труднее, поэтому с прошлого года мы перешли к активной миграции на CentOS 7. На подготовительном этапе перехода для CentOS были отработаны все внутренние процедуры, подготовлены конфиги и политики настройки (мы используем CFEngine). Поэтому сейчас во многих случаях миграция с одного дистрибутива на другой заключается в установке ОС через kickstart и развёртывании приложения с помощью системы деплоя нашей разработки — всё остальное осуществляется без участия человека. Так происходит во многих случаях, хотя и не во всех.

Но с самыми большими проблемами мы столкнулись при миграции серверов раздачи видео. На их решение у нас ушло полгода.
Читать дальше →

Информация

В рейтинге
Не участвует
Откуда
Москва, Москва и Московская обл., Россия
Зарегистрирован
Активность