
В этом уроке мы научимся запускать программу в несколько потоков, создавать полноценные уровни из мини изображения, так же научимся открывать несколько окон, скрывать и выводить вперед.
Программирование
В этом уроке мы научимся запускать программу в несколько потоков, создавать полноценные уровни из мини изображения, так же научимся открывать несколько окон, скрывать и выводить вперед.
Я недавно сделал маленькую библиотеку для решения задачи поиска кратчайшего пути на 2D карте с выпуклыми препятствиями. В процессе реализации я придумал пару алгоритмов и трюков, описания которых я нигде не встречал. Поэтому делюсь этими "изобретениями" с общественностью.
Горжусь тем, что мое решение работает очень быстро. Для внушительного количества полигонов все операции можно выполнять каждый кадр. Т.е. не надо ничего запекать и вся геометрия карты может меняться в каждом кадре.
После 18-го февраля начнется открытый и бесплатный курс "Deep Learning на пальцах".
Курс предназначен для того, чтобы разобраться с современным deep learning с нуля, и не требует знаний ни нейросетей, ни machine learning вообще. Лекции стримами на Youtube, задания на Питоне, обсуждения и помощь в лучших русскоязычных DS-сообществах — ODS.ai и ClosedCircles.
После него вы не станете экспертом, но поймете про что все это, сможете применять DL на практике и будете способны разбираться дальше сами. Ну, в лучшем случае.
Одновременно и в том же объеме курс будет читаться для магистрантов Новосибирского Государственного Университета, а также студентов CS центра Новосибирска.
Выглядеть объяснение на пальцах будет примерно так:
Главная ссылка — dlcourse.ai. Подробности ниже.
Я хочу представить вам результат своих экспериментов с алгоритмами распознавания образов с обучением с первого раза (так называемый One-Shot Learning). В результате экспериментов выработались определённые подходы к структуризации изображения и в итоге они воплотились в несколько взаимосвязанных алгоритмов и тестовое приложение на Android, которым можно проверить качество и работоспособность алгоритмов.
Моя цель была создать алгоритм с понятным принципом работы который может найти абстрактные зависимости в картинке с первого раза (обучиться) и показать приемлемое качество распознавания (поиска подобных абстрактных зависимостей) на последующих циклах распознавания. При этом логика принятия решения должна быть прозрачной, поддающейся анализу, ближе к линейному алгоритму. На условной шкале где на одном конце мозг а на другом станок с ЧПУ он гораздо ближе к станку чем нейросети.