Pull to refresh
68
2.8
Куцев Роман @kucev

LLMarena.ru Бенчмарк LLM моделей на русском языке

Send message

Как дообучать LLM с помощью Supervised Fine-Tuning

Reading time15 min
Views5.5K

Обычно большие языковые модели (large language model, LLM) обучают в несколько этапов, включающих предварительное обучение и множество этапов fine-tuning (см. ниже). Предварительное обучение — это дорогостоящий процесс (например, требующий многих сотен тысяч долларов на вычислительные ресурсы), однако fine-tuning модели LLM (или контекстное обучение) по сравнению с этим гораздо дешевле (например, сотни долларов или даже меньше). Учитывая широкую доступность и бесплатность (даже для коммерческого использования) предварительно обученных LLM (например, MPT, Falcon или LLAMA-2), мы можем создавать большой спектр мощных приложений благодаря fine-tuning моделей под нужные задачи.


Этапы обучения LLM

На текущем этапе исследований ИИ одним из самых широко применяемых видов fine-tuning моделей LLM стал supervised fine-tuning (SFT). При этой методике курируемый датасет высококачественных выходных данных LLM применяется для непосредственного fine-tuning модели. SFT прост и дёшев в использовании, это полезный инструмент выравнивания языковых моделей, ставший популярным даже за пределами исследовательского сообщества опенсорсных LLM. В этой статье мы вкратце расскажем о принципах SFT, рассмотрим исследования по этой теме и приведём примеры того, как практикующие специалисты могут с лёгкостью пользоваться SFT, написав всего несколько строк кода на Python.
Читать дальше →
Total votes 4: ↑4 and ↓0+5
Comments4

Fine-tuning больших языковых моделей в 2024 году

Reading time14 min
Views3.9K

Не секрет, что большие языковые модели (LLM) эволюционируют с безумной скоростью и привлекают внимание всей отрасли генеративного ИИ. Корпорации не просто заинтригованы, они одержимы LLM, и в частности, потенциалом fine-tuning LLM. В исследования и разработку LLM сейчас вкладываются миллиарды долларов. Лидеры отрасли и энтузиасты технологий всё сильнее стремятся углубить своё понимание LLM и их fine-tuning. Эта сфера natural language processing (NLP) постоянно расширяется, поэтому критически важно иметь актуальную информацию. Польза, которую LLM могут принести вашему бизнесу, зависит от ваших знаний и понимания этой технологии.

Цикл жизни большой языковой модели состоит из множества важных этапов, и сегодня мы рассмотрим один из самых любопытных и активно развивающихся частей этого цикла — процесс fine-tuning моделей LLM. Это трудозатратная, тяжёлая, но перспективная задача, используемая во многих процессах обучения языковых моделей.
Читать дальше →
Total votes 4: ↑4 and ↓0+5
Comments2

Что такое supervised fine-tuning?

Reading time7 min
Views1.4K
Supervised fine-tuning (SFT) — это методика, применяемая для адаптации предварительно обученных Large Language Model (LLM) под конкретную задачу при помощи размеченных данных.


В процессе SFT предварительно обученные LLM подвергаются fine-tuning на основе размеченного датасета при помощи методик обучения с учителем. Веса модели выравниваются на основании градиентов, полученных из функции потерь конкретной задачи, измеряющей разность между прогнозами LLM и эталонной разметкой.

Этот процесс позволяет модели обучаться паттернам и нюансам конкретной задачи, адаптируя её параметры в соответствии с распределением конкретных данных и требований задачи.

SFT, обычно выполняемый после предварительного обучения модели, применяется для того, чтобы научить модель следовать переданным пользователем инструкциям. Он более вычислительно затратен, чем fine-tuning без учителя, но и имеет больше шансов достичь повышенной точности.

Объём необходимого дообучения зависит от сложности задачи и размера датасета. В случае простого переноса стиля с использованием моделей OpenAI наподобие GPT-3.5 или GPT-4 для получения превосходных результатов обычно достаточно 30-50 высококачественных примеров.

Чтобы преобразовать базовую Large Language Model (LLM) в выполняющую инструкции LLM (например, превратить Mistral в Mistral Instruct), обычно требуется обучение на десятках тысяч примеров.

Дообучение Zephyr 7b выполнялось на 16 GPU Nvidia A100 в течение примерно четырёх часов. Это можно считать примером отправной точки для модели с 7 миллиардами параметров.
Читать дальше →
Total votes 3: ↑2 and ↓1+3
Comments0

Как с помощью supervised fine-tuning кастомизировать LLM

Reading time7 min
Views2.2K

В быстро развивающейся сфере Natural Language Processing (NLP) fine-tuning стал мощным и эффективным инструментом адаптации предварительно обученных больших языковых моделей (Large Language Model, LLM) под конкретные задачи. Предварительно обученные LLM (например, семейство GPT) продемонстрировали существенный прогресс в понимании и генерации языка. Однако эти предварительно обученные модели обычно учатся на огромных объёмах текстовых данных при помощи обучения без учителя и могут быть не оптимизированы под узкую задачу.

Fine-tuning позволяет закрыть этот пробел, воспользовавшись преимуществами общего понимания языка, полученными во время предварительного обучения, и адаптировав их к целевой задаче при помощи обучения с учителем. Благодаря fine-tuning предварительно обученной модели на специфичном для задачи датасете разработчики NLP могут достигать впечатляющих результатов с гораздо меньшим объёмом данных обучения и вычислительных ресурсов, чем при обучении модели с нуля. В частности, для LLM fine-tuning крайне важен, так как повторное обучение на всём объёме данных вычислительно слишком затратно.


Сравнение предварительного обучения LLM и fine-tuning

Успех fine-tuning привёл ко множеству передовых результатов в широком спектре задач NLP и сделал его стандартной практикой в разработке высокоточных языковых моделей. Исследователи и практики продолжают исследовать варианты и оптимизации методик fine-tuning, чтобы ещё больше расширить возможности NLP.

В этой статье мы глубже изучим процесс fine-tuning LLM на основе инструкций при помощи библиотеки transformers двумя разными способами: просто с библиотекой transformers и с модулем trl.
Читать дальше →
Total votes 1: ↑1 and ↓0+1
Comments1

Supervised Fine-Tuning: как настроить LLM под конкретную задачу?

Reading time11 min
Views2.2K

Пожалуй, для адаптации больших языковых моделей (large language model, LLM) под чётко очерченные задачи обработки естественного языка (natural language processing, NLP) нет технологии лучше, чем SFT (supervised fine-tuning). Для дообучения модели её необходимо предварительно обучить, а это означает, что она уже многому научилась из широкого спектра текстов.

Но можно ли после одного лишь предварительного обучения использовать модель в различных типах задач? Да, но ей всё равно будет не хватать совершенствования при помощи SFT, чтобы она действительно могла выполнять требуемые действия и стала опытной в определённой сфере знаний.
Читать дальше →
Total votes 4: ↑1 and ↓30
Comments1

Автоматическая разметка электронных писем при помощи ChatGPT и Zapier

Reading time6 min
Views2.3K

Иногда входящие в моей электронной почте походят на ящик со всяким хламом: я знаю, где всё находится, но там огромный беспорядок, который бы стоит расчистить… когда-нибудь. Или, что ещё лучше, пусть этим займётся кто-то ещё.

Было бы странно нанимать клинеров для приведения в порядок одного ящика, но для упорядочивания входящих вполне можно найти помощника — искусственный интеллект.

При помощи Zapier можно создать процесс, автоматически размечающий все входящие электронные письма и при помощи GPT компании OpenAI подбирающий подходящие метки. В статье я расскажу, как это сделать.
Читать дальше →
Total votes 3: ↑3 and ↓0+5
Comments0

Машинное обучение: мост между бизнесом и Data Science

Reading time16 min
Views4.7K

Если последние несколько лет вы не жили на далёком острове без электричества и связи, то, вероятно, слышали о машинном обучении. Этот тренд было сложно не заметить. Каждый раз, когда мы говорим о беспилотных автомобилях, чат-ботах, AlphaGo или предиктивной аналитике, упоминается та или иная реализация машинного обучения. Хотя недостатка в историях и евангелистах нет, машинное обучение пока не стало в глазах бизнеса абсолютной необходимостью. В общественном восприятии применяемые в ML алгоритмы близки к научной фантастике, а подготовка конкретного плана внедрения ML по-прежнему остаётся высоким барьером.

Цель этой статьи — практические ответы, а не подготовка видения или продвижение тренда. Мы поговорим о зонтичном термине data science, о взаимосвязи его отраслей, основных задачах, которые может решать машинное обучение, а также о том, как эти задачи можно перевести на язык бизнеса. Также мы обсудим основные решения, которые нужно принять при найме специалистов, и выделим сложности, которые нужно учесть заранее
Читать дальше →
Total votes 7: ↑4 and ↓3+3
Comments3

Распознавание именованных сущностей: механизм, методики, сценарии использования и реализация

Reading time13 min
Views2.7K

Естественные языки сложны. А когда на горизонте появляется контекст, они становятся ещё сложнее. Возьмём для примера фамилию Линкольн. Некоторые сразу подумают о шестнадцатом президенте США, выдающейся исторической фигуре. Однако для других это производитель автомобилей с тем же названием. Одно простое слово имеет разные значения.

Мы, люди, без проблем различаем значения и категории. Это свидетельствует о нашем интуитивном понимании окружающего мира. Но когда дело касается компьютеров, эта, казалось бы, простая задача превращается в неоднозначную проблему. Подобные трудности подчёркивают необходимость надёжного распознавания именованных сущностей (named entity recognition, NER) — механизма, при помощи которого мы учим машины понимать различные лингвистические нюансы.

В этой статье мы расскажем о том, что такое NER, о его принципах работы и о том, как оно используется в реальной жизни. Также в ней мы прольём свет на различные методики NER и способы реализации модели NER.
Читать дальше →
Total votes 2: ↑2 and ↓0+4
Comments0

Как организовать себе эргономичное рабочее место

Reading time9 min
Views9.2K

Ваше рабочее место не должно утомлять вас каждый день, но именно это делают неудобные стулья, захламлённые столы и плохое освещение, даже если вы этого не замечаете. Однако внеся изменения, вы можете улучшить свою рабочую среду и защититься от мучений, причиняемых вашим столом.

В этой статье мы расскажем всё, что необходимо знать о создании эргономичного стола и других способах улучшения рабочего пространства.
Читать дальше →
Total votes 8: ↑4 and ↓4+3
Comments17

Разметка данных в Label Studio при помощи GPT-4: интеграция ML Backend

Reading time7 min
Views1.9K

Введение


Получение качественных данных — краеугольный камень любого проекта машинного обучения. Этот процесс, в котором традиционно доминирует трудозатратная разметка данных, часто может превращаться в длительную и дорогостоящую задачу. Но что, если мы сможем воспользоваться прогрессом в развитии больших языковых моделей (LLM) для перехода от разметки данных к проверке разметки?

На сцене появляется GPT-4. Эта система (разработанная на основе GPT-4), имеющая более ста миллионов пользователей — одна из самых популярных языковых моделей.

В предыдущей статье мы показали, как можно ускорить процесс разметки предварительным аннотированием данных при помощи GPT-4. Эта методика позволяет нам загружать готовый к проверке предварительно размеченный датасет, а не выполнять монотонный процесс, начиная с нуля. В этой статье мы продолжим развивать эту тему, оказав, как можно объединить GPT-4 с бэкендом машинного обучения (ML Backend) Label Studio.

При помощи Label Studio ML Backend можно размечать данные непосредственно в Label Studio, что позволяет нам совершить переход от трудозатратной задачи разметки данных к гораздо более эффективному процессу проверки и совершенствования предварительных меток, что существенно ускоряет работу.
Читать дальше →
Total votes 1: ↑1 and ↓0+1
Comments1

Дата-майнинг: процесс, типы методики и инструменты

Reading time13 min
Views4.2K
Дата-майнинг, в основе которого лежат научные и технологические принципы — это стратегический процесс, предназначенный для выявления паттернов, корреляций и трендов, скрывающихся под поверхностью информации.

В этой статье мы расскажем о том, что такое дата-майнинг, о его методиках, инструментах, опыте использования и примерах.

Что такое дата-майнинг?


Дата-майнинг (data mining) — это процесс обработки данных для выявления паттернов, корреляций и аномалий в крупных датасетах. В нём применяются разнообразные методики статистического анализа и машинного обучения для извлечения из данных значимой информации и выводов. Компании могут использовать эти выводы для принятия обоснованных решений, прогнозирования трендов и совершенствования бизнес-стратегий.

Например, при помощи дата-майнинга туристическая компания может обнаружить, что путешественники-одиночки часто бронируют отели рядом с технологическими хабами или коворкинг-пространствами, даже если они расположены далеко от основных туристических достопримечательностей. Это может намекнуть о том, что существенный процент путешествующих в одиночестве объединяет поездки для работы и отдыха, предпочитая места, удовлетворяющие их профессиональным потребностям. Такой вывод может позволить компании сосредоточить свои маркетинговые кампании на отелях, находящихся поблизости от бизнес-районов или коворкингов.


Визуальное определение дата-майнинга

Этот процесс является неотъемлемой частью преобразования огромных объёмов сырых данных (структурированных, неструктурированных и частично структурированных) в ценные знания, на основании которых можно планировать свои действия.
Читать дальше →
Total votes 5: ↑4 and ↓1+5
Comments0

Разметка данных в 2023 году: текущие тренды и требования будущего

Reading time6 min
Views2.9K

Разметка данных и/или аннотирование данных уже давно являются критически важным компонентом многих проектов машинного обучения и ИИ. В последние годы спрос на точную и надёжную разметку данных существенно вырос, ведь этот процесс становится всё более насущным для успеха множества проектов. Что же такое разметка данных? Как она повлияет на бизнесы? На какие тренды стоит обратить внимание, потому что они сформируют образ будущего разметки данных? В своём посте мы исследуем эти вопросы, чтобы лучше понимать, в каком направлении будет двигаться технология в ближайшие несколько лет.
Читать дальше →
Total votes 4: ↑3 and ↓1+2
Comments1

Заблуждения о семантической сегментации

Reading time4 min
Views1.7K

Семантическая сегментация — это задача компьютерного зрения, заключающаяся в помещении в один класс связанных элементов изображения.

Семантическая сегментация состоит из трёх этапов:

Классификация: обнаружение и классификация определённого объекта на изображении.

Локализация: нахождение предмета и отрисовка вокруг него ограничивающего прямоугольника.

Сегментация: процесс группировки пикселей в локализованном изображении при помощи маски сегментации.

Существует множество подтипов семантической сегментации, но все они возникают вследствие выбора пары параметров из двух категорий: размерности данных и разрешения выходных аннотаций.
Читать дальше →
Total votes 2: ↑1 and ↓10
Comments2

Разметка данных: неочевидные затраты на голосовые технологии

Reading time9 min
Views1.2K
В голосовых технологиях используется глубокое обучение (особый вид машинного обучения), позволяющее обучать Speech-to-Text (STT) — компонент обработки голоса, получающий от пользователя в аудиоформате входные данные (например, речь) и преобразующий этот фрагмент в текст. [Ссылка] В этом отношении большинство обучающих модели STT компаний полностью зависят от ручной транскрипции всех обучающих фрагментов, однако затраты на связанное с этой методикой аннотирование данных оказываются очень высокими.


Эта проблема применения ручного труда также влияет и на Natural Language Understanding (NLU) — компонент, получающий текстовое описание пользовательского ввода и извлекающий из него структурированные данные (например, запросы действий и сущности), которые позволяют системе понимать человеческий язык. [Ссылка] Например, в некоторых задачах NLU (например, в Named Entity Recognition, распознавании именованных сущностей) требуется присвоение метки каждому слову во фразе, чтобы система поняла, что это слово означает в пользовательском вводе.
Читать дальше →
Total votes 2: ↑1 and ↓1+2
Comments2

12 лучших инструментов аннотирования изображений на 2023 год

Reading time11 min
Views3.2K

С развитием сферы искусственного интеллекта (AI) увеличивается и спрос на высококачественные инструменты аннотирования изображений. Аннотирование изображений — это процесс добавления в изображения метаданных, например, меток или тэгов, чтобы их было проще распознавать и выполнять по ним поиск машинам. Этот процесс критически важен для обучения моделей ИИ, чтобы они могли точно распознавать и классифицировать изображения.

При таком большом количестве имеющихся инструментов аннотирования изображений может быть сложно понять, какие из них лучше подходят под ваши потребности. Чтобы помочь вам сделать более обоснованное решение, мы составили список двенадцати лучших инструментов аннотирования изображений на 2023 год.

В этой статье мы обсудим критерии, использованные для оценки этих инструментов, их плюсы и минусы, а также сравним их между собой. Также мы приведём отзывы и рейтинги пользователей, варианты цен и тарифов и информацию об интеграции с другим ПО и платформами.
Читать дальше →
Rating0
Comments0

Почему важна разметка данных: в основе ChatGPT лежит труд людей

Reading time4 min
Views3.2K

Чат-боты стали неотъемлемой частью жизни, они в равной степени помогают нам и в работе, и в развлечениях. Одним из примеров таких ботов является ChatGPT компании OpenAI — обученная в беспрецедентных масштабах языковая модель, способная генерировать похожие на человеческие ответы на широкий спектр промтов. ChatGPT быстро набрал популярность, продемонстрировав мощь ИИ, и привлёк внимание общественности к этой сфере. Однако хотя его успех часто связывают с лежащими в его основе современными технологиями, многие недооценивают человеческий труд, вложенный в создание ChatGPT.
Читать дальше →
Total votes 6: ↑2 and ↓4-2
Comments5

Разметка данных при помощи GPT-4

Reading time9 min
Views7.7K

Разметка данных — критически важный компонент проектов машинного обучения. К ней применима старая поговорка «мусор на входе — мусор на выходе». В процессе разметки создаются аннотированные датасеты для обучения и проверки. Однако этот процесс может быть длительным и дорогостоящим, особенно для проектов с большими объёмами данных. Но что если мы сможем воспользоваться прогрессом LLM для снижения затрат и усилий, необходимых для выполнения задач разметки данных?

GPT-4 — это современная языковая модель, разработанная компанией OpenAI. Она способна понимать запросы и генерировать текст, напоминающий составленный людьми. В этом посте мы расскажем о том, как можно использовать GPT-4 с целью настройки меток для различных задач. Это может существенно снизить затраты времени и труда, связанные с процессом разметки. Чтобы показать, как инжиниринг промтов способен помочь в создании точных и надёжных меток при помощи GPT-4 и как эту методику можно использовать для гораздо более мощных возможностей, мы воспользуемся примером с классификацией эмоционального настроя (sentiment classification).
Читать дальше →
Total votes 5: ↑5 and ↓0+5
Comments1

Размерности качества данных: обеспечение качества данных с помощью Great Expectations

Reading time7 min
Views2.8K

Качество данных играет критически важную роль в любом процессе управления данными. Организации используют данные для принятия решений и улучшения различных бизнес-показателей. Однако если данные усеяны неточностями, ошибками или несогласованностями, то они могут нанести больше вреда, чем пользы.

Согласно опросу Gartner за 2020 год, в среднем потери из-за низкого качества данных составляют примерно $12,8 миллиона за год. Как сообщается в последнем отчёте State of Data Quality, задержки продакшена (задержки с выпуском продукта) — характерный симптом низкого качества данных. Высококачественные и безошибочные данные повышают надёжность и верность полученных из них выводов.

Для повышения качества данных необходима система его оценки. В достижении этой цели вам помогут размерности качества данных. Размерности позволяют измерять покрытие и выявлять компоненты, требующие тестирования качества данных.

В этой статье рассматриваются шесть размерностей качества данных: полнота, согласованность, целостность, вневременная актуальность, уникальность и валидность. Определив их, вы сможете обеспечить исчерпывающее понимание качества данных и выявить аспекты, требующие совершенствования. И здесь нам на помощь приходит Great Expectation (GX).
Читать дальше →
Rating0
Comments1

9 лучших инструментов аннотирования изображений для Computer Vision

Reading time9 min
Views3.2K

На дворе 2023 год, но аннотирование изображений по-прежнему остаётся одним из самых трудоёмких этапов вывода на рынок проекта компьютерного зрения. В помощь вам мы составили список самых популярных инструментов аннотирования изображений.

Это руководство поможет вам сравнить лучшие инструменты аннотирования и выбрать подходящий.

Мы будем сравнивать каждый из них по ключевым факторам, в том числе по функциональности аннотирования, поддержке различных типов данных и сценариев использования, возможностям QA/QC, безопасности и конфиденциальности данных, управлению данными, интеграции с конвейером машинного обучения и клиентской поддержке.
Читать дальше →
Rating0
Comments0

Руководство по масштабированию MLOps

Reading time8 min
Views1.9K

Команды MLOps вынуждены развивать свои возможности по масштабированию ИИ. В 2022 году мы столкнулись со взрывом популярности ИИ и MLOps в бизнесе и обществе. В 2023 год ажиотаж, учитывая успех ChatGPT и развитие корпоративных моделей, будет только расти.

Столкнувшись с потребностями бизнеса, команды MLOps стремятся расширять свои мощности. Эти команды начинают 2023 год с длинного списка возможностей постановки ИИ на поток. Как мы будем масштабировать компоненты MLOps (развёртывание, мониторинг и governance)? Каковы основные приоритеты нашей команды?

AlignAI совместно с Ford Motors написали это руководство, чтобы поделиться с командами MLOps своим успешным опытом масштабирования.
Читать дальше →
Rating0
Comments0

Information

Rating
1,196-th
Location
Москва, Москва и Московская обл., Россия
Registered
Activity