Этот пост я хочу посвятить приятному трофею, добытому в англоязычном интернете. Речь пойдет об одном из методов адаптивной бинаризации изображений, методе Брэдли (или Брэдли-Рота, поскольку авторов двое).
Процесс бинаризации – это перевод цветного (или в градациях серого) изображения в двухцветное черно-белое. Главным параметром такого преобразования является порог t – значение, с которым сравнивается яркость каждого пикселя. По результатам сравнения, пикселю присваивается значение 0 или 1. Существуют различные методы бинаризации, которые можно условно разделить на две группы – глобальные и локальные. В первом случае величина порога остается неизменной в течение всего процесса бинаризации. Во втором изображение разбивается на области, в каждой из которых вычисляется локальный порог.
Главная цель бинаризации, это радикальное уменьшение количества информации, с которой приходится работать. Просто говоря, удачная бинаризация сильно упрощает последующую работу с изображением. С другой стороны, неудачи в процессе бинаризации могут привети к искажениям, таким, как разрывы в линиях, потеря значащих деталей, нарушение целостности объектов, появление шума и непредсказуемое искажение символов из-за неоднородностей фона. Различные методы бинаризации имеют свои слабые места: так, например, метод Оцу может приводить к утрате мелких деталей и „слипанию“ близлежащих символов, а метод Ниблэка грешит появлением ложных объектов в случае неоднородностей фона с низкой контрастностью. Отсюда следует, что каждый метод должен быть применен в своей области.
Немного теории
Процесс бинаризации – это перевод цветного (или в градациях серого) изображения в двухцветное черно-белое. Главным параметром такого преобразования является порог t – значение, с которым сравнивается яркость каждого пикселя. По результатам сравнения, пикселю присваивается значение 0 или 1. Существуют различные методы бинаризации, которые можно условно разделить на две группы – глобальные и локальные. В первом случае величина порога остается неизменной в течение всего процесса бинаризации. Во втором изображение разбивается на области, в каждой из которых вычисляется локальный порог.
Главная цель бинаризации, это радикальное уменьшение количества информации, с которой приходится работать. Просто говоря, удачная бинаризация сильно упрощает последующую работу с изображением. С другой стороны, неудачи в процессе бинаризации могут привети к искажениям, таким, как разрывы в линиях, потеря значащих деталей, нарушение целостности объектов, появление шума и непредсказуемое искажение символов из-за неоднородностей фона. Различные методы бинаризации имеют свои слабые места: так, например, метод Оцу может приводить к утрате мелких деталей и „слипанию“ близлежащих символов, а метод Ниблэка грешит появлением ложных объектов в случае неоднородностей фона с низкой контрастностью. Отсюда следует, что каждый метод должен быть применен в своей области.