Привет хабр! Меня зовут Артем Глазков, я работаю консультантом в российском подразделении компании SAS. Сегодня я хочу рассказать про операционализацию аналитики на практическом примере проекта, который я сделал совместно с моим коллегой Иваном Нардини для крупной итальянской сырьевой компании. Я постараюсь сфокусироваться на наиболее важных деталях и преимуществах подхода ModelOps.
Согласно независимым исследованиям, операционализация аналитики является ключевым трендом развития в области Искусственного Интеллекта. Необходимо научиться не только строить точные модели машинного обучения, но и организовать эффективное управление их жизненным циклом. Без этого модель рискует навсегда застрять внутри стен ‘лаборатории данных’. Практика показывает, что именно там остаются более половины разработанных моделей. Это означает, что время и усилия, затраченные на создание таких моделей, так и не были компенсированы полезным эффектом от их применения.
После внедрения задача инструментов управления жизненным циклом моделей заключается в том, чтобы постоянно поддерживать модель в форме. Мир вокруг модели меняется — в отсутствие настроенного процесса контроля качества работы модели рано или поздно точность ее работы упадет ниже приемлемого значения. Инструменты мониторинга моделей позволяют своевременно выявить потребность в дообучении. Обновленная модель сможет увидеть новые закономерности в данных и правильно их учесть. В результате, удастся обеспечить стабильно высокое качество работы модели на этапе эксплуатации, а значит получить больше практической пользы от каждой разработки.