
Представим себе картину из идеального мира данных, в котором всё стабильно, изменений нет и на горизонте не предвидятся. Аналитик полностью согласовал с заказчиком требования к витрине, спроектировал решение и передал в разработку. Разработчики внедрили витрину в продуктивный контур, пользователи счастливы, всё работает корректно — сопровождение разработчиков и аналитиков не требуется. Представили?
Но, как мы знаем, «IT» и «изменения» — синонимы, поэтому в идеальном мире, как гром среди ясного неба, появляются новые требования: разработать инструмент для регулярного добавления в витрину данных новых атрибутов, на текущий момент в неизвестном количестве.
Сразу отмечу, что решения и оценки, о которых пойдёт речь, подбирались для работы с большими данными на стеке технологий Apache Hadoop, где для обработки данных использовали фреймворк Apache Spark, СУБД — Apache Hive для анализа данных, оркестратор — Airflow, данные хранятся в колоночном формате Parquet.