Обновить
81.62

Big Data *

Большие данные и всё о них

Сначала показывать
Порог рейтинга
Уровень сложности

Переизобретая аналитику будущего: как и почему LLM-агенты меняют анализ продуктов, но все не так просто

Уровень сложностиСредний
Время на прочтение10 мин
Количество просмотров3.3K

Привет! AI-агенты — самая горячая тема года и не просто так: это действительно мощная концепция, которая неизбежно заставляет пересматривать устоявшиеся подходы во многих сферах. Одна из самых интересных областей для агентов — аналитика и BI, и последние полгода я активно занимаюсь в том числе этим.

Адаптивные и налету подстраивающиеся под задачу дашборды, естественный язык вместо SQL, автономная работа для генерации и проверки гипотез, — все это очень интересно, но реальность всегда чуточку сложнее.

Обо всем этом и поговорим.

Давайте разбираться!

Читать далее

DAX-style подход в C# для SUMMARIZECOLUMNS из Power BI

Уровень сложностиПростой
Время на прочтение6 мин
Количество просмотров1.3K

Привет, Хабр! Одной из важных функций в аналитическом языке DAX является SUMMARIZECOLUMNS, т.к. она готовит данные для дашбордов за счет декартова произведения полей группировки, если поля группировки из разных таблиц. Понятно, что на любом языке программирования можно реализовать логику, в чем-то аналогичную SUMMARIZECOLUMNS из DAX. Интересующимся DAX-style логикой для C# из NuGet пакета DaxSharp для функцииSUMMARIZECOLUMNS — добро пожаловать под кат :)

Читать далее

Стратегия успеха: ключи к развитию карьеры в Data Science. Часть 1

Уровень сложностиПростой
Время на прочтение18 мин
Количество просмотров5.1K

Привет! Меня зовут Анна Ширшова, я уже 14 лет работаю в Data Science. В этом материале вы найдете мой личный чек‑лист по развитию карьеры: как ставить цели, где искать возможности, какие ошибки тормозят рост и как их обходить. 

Работу в ВТБ я начала в качестве лида команды, которую сама собирала с нуля. За время работы она была расширена до целого Кластера моделирования для СRM и оптимизации. В него вошли четыре команды из DE, DS, MLOPs, системных аналитиков и тестировщиков, руководителем которого являюсь. 

Некоторые коллеги, которые тогда вошли в команду в качестве junior DS, сейчас уже являются лидерами (product owner) команд Кластера. На основе своего опыта найма и развития сотрудников в сжатые сроки, в этой статье делюсь как стопперами, которые, на мой взгляд, мешают развитию карьеры, так и возможными путями по их устранению.

Читать далее

По ту сторону океана: как мы съездили на Databricks Data + AI Summit

Уровень сложностиПростой
Время на прочтение7 мин
Количество просмотров679

Представьте, что вы ни разу не выступали на конференциях или митапах, а тут решились и едете на ваше первое выступление, да не куда-нибудь, а на Data + AI Summit в Сан-Франциско. «Так не бывает!» — скажете вы, а я отвечу: «бывает!»

Привет! Это Женя Добрынин, Senior Data Engineer в Dodo Engineering. Сегодня я расскажу о том, как мы с коллегой ездили на конференцию в США, а заодно и о том, во сколько вам обойдётся такая поездка, и что нужно сделать, чтобы она состоялась.

Читать далее

MWS Data Compass: как мы в МТС свой корпоративный BI построили

Время на прочтение10 мин
Количество просмотров2.7K

Привет, Хабр! Я Павел Шестаков, Product Owner BI в MWS. За последние годы цифровой трансформации в нашей компании многие команды прошли путь от хаоса и пересылаемых друг другу «экселек» до удобных выстроенных процессов. И инструменты BI (Business Intelligence) сыграли в этом не последнюю роль.

Сегодня расскажу, как и почему мы внедряли и развивали свой BI и как добились того, что сейчас он обслуживает тысячи пользователей и покоряет внешний рынок. Это будет история про энтузиазм, стартап внутри корпорации, импортозамещение и, конечно же, работу с пользователями. Поехали!

Читать далее

AI-агенты в деле: 15 рабочих примеров для роста вашего бизнеса

Время на прочтение14 мин
Количество просмотров15K

AI-агенты радикально меняют подход технических команд к автоматизации, переходя от традиционных, основанных на правилах workflow к более динамичным, интеллектуальным системам, способным адаптироваться и принимать решения в реальном времени.

В отличие от статической автоматизации, основанной на предопределенных триггерах и действиях, AI-агенты используют большие языковые модели (LLM) для обработки сложных данных, понимания контекста и реагирования на непредсказуемые сценарии.

В этой статье мы рассмотрим 15 практических примеров AI-агентов, продемонстрируем, как они автоматизируют сложные задачи и оптимизируют рабочие процессы. Также мы объясним, как платформы вроде n8n упрощают разработку, кастомизацию и масштабирование AI-агентов для применения в реальных бизнес-кейсах.

Поехали!

Читать далее

Фабрика данных 2030: от GAN-конвейеров до каузальных сетей — кто отвечает за рождение синтетической реальности

Уровень сложностиПростой
Время на прочтение15 мин
Количество просмотров1.2K

Десять лет назад мы говорили о «данных–нефть». В 2025-м метафора смещается: нефть закончилась, а нужен устойчивый источник энергии. Синтетические данные перестали быть лабораторным трюком — к 2030-му они превращаются в топливо, на котором летят банки, медицина и индустриальный IoT. GAN-ы научились соблюдать дифференциальную приватность, диффузионные модели вытягивают сигнал из шума лучше, чем биржевые трейдеры, а причинные графы заставляют базы данных «думать» о бизнес-логике. Мы собрали всё — от свежих метрик PrivEval до реляционной магии SCM и агентных симуляций, — чтобы показать: синтетика уже не копия реальности, а песочница для инноваций. Если вы ищете способ ускорить ML-проекты, избавиться от юридических цепей и заглянуть в будущее генеративного ИИ, эта статья станет вашим порталом.

Читать далее

BI: 5 трендов в сфере ИИ

Уровень сложностиСредний
Время на прочтение4 мин
Количество просмотров4K

Привет, Хабр! Сегодня я предлагаю немного порассуждать на тему ИИ в сфере BI-аналитики. В последнее время тема искусственного интеллекта все чаще поднимается на конференциях, да и мне самому все больше приходится рассуждать про ИИ и даже делать доклады о методах его применения (например, как на конференции Data&AI). Совершенно точно вокруг очень много хайпа и хочется разобраться, где же на самом деле ИИ в контексте BI-аналитики даёт реальное преимущество, а где — всё ещё нет.

Читать далее

Data Lake 2.0: Iceberg и Parquet в бою за миллисекунды

Уровень сложностиСредний
Время на прочтение9 мин
Количество просмотров4.5K

Привет, Хабр! Меня зовут Валерий Бабушкин, я CDO МТС Web Services. Если достаточно много занимаешься машинным обучением, то однажды начинаешь говорить про дата-инженерию — как герой, который много сражается со злом и в итоге сам переходит на темную сторону. Вот и моя очередь настала.

На последнем True Tech Day я рассказал, как Apache Iceberg и Apache Parquet позволяют построить современную инфраструктуру для больших данных. В этом материале я расскажу, какие задачи решает каждый инструмент, как они работают в связке, и сравню производительность Hive с Parquet-партициями против Iceberg с Parquet-таблицами.

Читать далее

Чат-бот с LLM в облаке: опыт Новосибирского государственного университета и инструкция по запуску

Время на прочтение10 мин
Количество просмотров2.5K

Сейчас мало кого удивишь чат-ботом в Telegram, даже если он на базе LLM. Но, согласитесь, таким умным решением может похвастаться не каждый университет.

На связи Роман Дерунец и Иван Бондаренко (@bond005) — научные сотрудники лаборатории прикладных цифровых технологий механико-математического факультета НГУ. В статье поделимся опытом разработки нашего университетского чат-бота: расскажем, зачем он понадобился НГУ, почему мы решили создать его с нуля и что важно знать тем, кто хочет такой же. А еще — поделимся инструкцией, как запустить похожее решение в облаке.

Читать дальше

Мы достигли пика в развитии ИИ!… или нет?

Уровень сложностиПростой
Время на прочтение10 мин
Количество просмотров7.1K

Вы, наверное, и сами заметили: в последние месяцы в мире ИИ не происходит ничего по-настоящему прорывного, особенно если сравнивать с предыдущими четырьмя годами. Похоже, возможности искусственного интеллекта уперлись в потолок. Особенно заметно, как гигантские корпорации — и даже целые страны — пытаются всеми силами преодолеть этот кризис. Кто как может.

Читать далее

Реализация правил IBCS в Power BI

Уровень сложностиСредний
Время на прочтение8 мин
Количество просмотров416

Создание понятных и информативных отчетов — ключевая задача для аналитиков и специалистов по данным. В этой статье мы разбираем, как стандарты IBCS (International Business Communication Standards) могут помочь улучшить визуализацию данных в Power BI, повысив их читаемость и эффективность. Рассмотрим, как связать ClickHouse с Apache Superset для создания мощных аналитических дашбордов и какие практики помогут вам избежать избыточности и повысить точность представленных данных.

Читать далее

Запускаем личный АИ-инфоконвейер: как я строю систему смыслового мониторинга с YAML и GPT

Уровень сложностиСредний
Время на прочтение5 мин
Количество просмотров2.2K

Мне приходится тратить много времени на мониторинг арбитража, госзакупок и других документов: PDF на сотни страниц, новости с «водой», RSS при этом отсутствует.

Поэтому я решил разработать open-source инструмент, который сам проверяет сайты, скачивает документы и с помощью локального ИИ (GPT4All / DeepSeek) делает краткую смысловую выжимку по YAML-шаблону.

Он должен работать как конвейер: источник → шаблон → интерпретация → результат. Локально, без облаков. И объединять всё в единую ленту новостей.

Сейчас я дорабатываю MVP — и я хочу понять, какие шаблоны наблюдения наиболее востребованы: законопроекты, торги, релизы, или что-то ещё?

Читать далее

Ближайшие события

Алгоритмы для работы с большими данными в Go: HyperLogLog и Count-Min Sketch

Уровень сложностиСредний
Время на прочтение6 мин
Количество просмотров4.6K

Алгоритмы для работы с большими данными

Всем привет! Для начала давайте разберем что такое вообще Алгоритмы для работы с большими данными, основная суть алгоритмов для работы с большими данными  — это эффективная обработка огромных объёмов информации при минимальных вычислительных ресурсах (памяти, CPU, диске). Их суть — жертвовать точностью ради скорости и масштабируемости.

Читать далее

Развёртывание боевого кластера Cassandra. Часть 2

Уровень сложностиСложный
Время на прочтение15 мин
Количество просмотров2.9K

Это продолжение цикла, рассказывающего о практике развёртывания производственного кластера Cassandra. В первой части мы начали продвигаться вот по такому плану:

1. Анализ рабочей нагрузки и требований
2. Разработка схемы данных
3. Настройка хостовых машин
= ВЫ НАХОДИТЕСЬ ЗДЕСЬ =
4. Настройка конфигурации Cassandra
5. Настройка топологии кластера
6. Подключение Prometheus Cassandra Exporter
7. Подключение Prometheus Node Exporter
8. Вывод всех метрик в Grafana
9. Проведение нагрузочного тестирования
10. Дополнительный тюнинг по результатам теста

Продолжим?

Читать далее

Как уменьшить размер модели Power BI на 90%

Уровень сложностиСредний
Время на прочтение14 мин
Количество просмотров4.1K

Вы когда-нибудь задумывались, что делает Power BI таким быстрым и мощным с точки зрения производительности? Настолько мощным, что он выполняет сложные вычисления над миллионами строк за мгновение.

В этой статье мы подробно рассмотрим, что находится «под капотом» Power BI: как данные хранятся, сжимаются, запрашиваются и, наконец, возвращаются в отчёт. После прочтения, надеюсь, у вас появится лучшее понимание того, что происходит в фоновом режиме, и вы сможете оценить важность создания оптимальной модели данных для достижения максимальной производительности с использованием движка Power BI.

Читать далее

Краткий обзор платформы данных Т-Банка

Уровень сложностиСредний
Время на прочтение17 мин
Количество просмотров13K

Привет, Хабр! Меня зовут Дима Пичугин, и уже семь лет я занимаюсь различными компонентами T Data Platform. Эта статья — результат внутреннего аудита наших инструментов, но я подумал, что она может быть интересна не только нашим аудиторам, но и более широкой аудитории. Enjoy!

Платформа данных в Т-Банке существует более 18 лет и за это время прошла значительный путь эволюции. Она помогает более чем 17 тысячам пользователей извлекать из данных ценную информацию для бизнеса. За последние годы подходы к работе с данными заметно изменились: индустрия постепенно отходила от классических концепций хранилищ данных по Инмону и Кимбеллу в сторону Data Lake, а затем — Lakehouse-архитектур. Вместе с отраслью менялась и наша платформа.

В статье расскажу, как трансформировалась T Data Platform за 18 лет развития, и опишу ее текущее устройство — без погружения в технические детали, но с акцентом на общую архитектуру. Для тех, кому интересны отдельные инструменты или решения, оставлю ссылки на подробные материалы и выступления.

Читать далее

MCP: новая игра на рынке искусственного интеллекта

Время на прочтение13 мин
Количество просмотров16K

Всё, что нужно знать о Model Context Protocol (MCP)

«Даже самые продвинутые модели ограничены своей изоляцией от данных — они заперты в информационных силосах и легаси-системах».
Anthropic о важности интеграции контекста

Сегодняшние большие языковые модели (LLM) невероятно умны, но находятся в вакууме. Как только им требуется информация вне их «замороженных» обучающих данных, начинаются проблемы. Чтобы AI-агенты действительно были полезны, им нужно получать актуальный контекст в нужный момент — будь то файлы, базы знаний, инструменты — и даже уметь совершать действия: обновлять документы, отправлять письма, запускать пайплайны.

Так сложилось, что подключение модели ко всем этим внешним источникам данных было хаотичным и нестабильным: разработчикам приходилось писать кастомные интеграции или использовать узкоспециализированные плагины под каждый API или хранилище. Такие «сделанные на коленке» решения были хрупкими и плохо масштабировались.

Чтобы упростить это, Anthropic представила Model Context Protocol (MCP) — открытый стандарт, предназначенный для того, чтобы связать AI-ассистентов с данными и инструментами, подключая любые источники контекста. MCP был анонсирован в ноябре 2024 года. Тогда реакция была сдержанной. Но сегодня MCP — на волне: он уже обогнал LangChain по популярности и, по прогнозам, скоро обойдёт OpenAPI и CrewAI.

Крупные игроки AI-индустрии и open source-сообщества начали активно поддерживать MCP, видя в нем потенциально революционный инструмент для построения агентных систем на базе LLM.

Читать далее

Российский новый университет подключился к «РосНавыку»

Время на прочтение3 мин
Количество просмотров624

9 июля для ректората Российского нового университета (РосНОУ) при поддержке Университетского консорциума исследователей больших данных прошёл семинар сервиса «РосНавык». Этот мониторинговый сервис представила Дарья Олеговна Дунаева, менеджер проекта, ведущий аналитик научно-исследовательской лаборатории прикладного анализа больших данных Томского государственного университета.

Читать далее

ИИ-магия: фронтенд, который думает

Уровень сложностиСредний
Время на прочтение9 мин
Количество просмотров3.2K

Автор: Кристина Паревская, Neoflex

Мы живем в мире быстро развивающихся технологий. С каждым годом frontend-разработка проще не становится. Сегодня frontend-разработчики могут не просто создавать обычные формы, но и игры, и даже запускать модели ИИ для выполнения задач, например, распознавания объекта. В данной статье будет рассказано, как на примере системы по распознаванию возгораний объекта в доме можно без backend части добавить в свое приложение модель для обнаружения пожара.

Погружаемся в тему пожаров и возгораний

Распознавание возгораний объектов на ранних стадиях является важной и актуальной проблемой в наши дни, решение которой снизит экономический риски и спасет жизни многих людей.

Такие компании, как Johnson Controls, Honeywell International, Inc., GENTEX CORPORATION, Siemens, Robert Bosch GmbH, Halmaplc, Eaton, Raytheon Technologies Corporation уделяют свое внимание исследованиям в области распознавания возгораний объектов и предлагают свои решения по устранению пожаров. Этими компаниями движут желание помочь людям, быстрое развитие беспроводных технологий и развитие строительной отрасли, охватившей весь мир.

Читать далее

Вклад авторов