Решая соревнования на Kaggle начинаешь замечать паттерн. Baseline сделать просто: загрузить данные, запустить CatBoost или LightGBM, получить baseline метрику. Это занимает полчаса. Но чтобы попасть в топ решений, нужно перепробовать десятки вариантов препроцессинга, сотни комбинаций фичей и тысячи наборов гиперпараметров.
Существующие AutoML системы не сильно помогают. Они работают по фиксированному сценарию: пробуют предопределенный набор алгоритмов, выбирают лучший по метрике и возвращают результат. AutoGluon обучает несколько моделей и делает многоуровневый ансамбль, но каждый запуск начинается с нуля. TPOT генерирует pipeline через генетический алгоритм, но не учится на ошибках предыдущих запусков.
Главная проблема в том, что эти системы не рассуждают. Они не анализируют почему конкретный подход сработал или провалился. Они не адаптируются к специфике задачи. Они не накапливают опыт между запусками. Каждая новая задача для них как первая.
Человек работает иначе. Если дата-саентист видит несбалансированные классы, он сразу знает что нужна стратификация и подбор порога. Если видел похожую задачу раньше, применяет то, что сработало тогда. Если первая попытка провалилась, анализирует почему и пробует другой подход.
С появлением языковых моделей появилась возможность создать систему, которая работает ближе к человеку. LLM умеют анализировать данные, рассуждать о выборе методов и учиться на примерах. Но одна модель недостаточна. Она может пропустить очевидную ошибку или зациклиться на неправильном подходе. Нужна архитектура, которая позволит системе проверять саму себя и накапливать опыт.