Как стать автором
Поиск
Написать публикацию
Обновить
769.3

Машинное обучение *

Основа искусственного интеллекта

Сначала показывать
Порог рейтинга
Уровень сложности

Приглашаем на DevFest Владивосток

Время на прочтение1 мин
Количество просмотров1.8K
Если вы будете во Владивостоке 3 декабря — приходите на конференцию для разработчиков DevFest!

У нас будут доклады и мастер-классы по Android, машинному обучению, web разработке, Kubernetes и Go; Интересные железяки — Google Home, Android TV, Cardboard, Tango.

Конференция проводится GDG Владивосток при поддержке Google.

Участие бесплатное. Почитать подробней и зарегистрироваться можно на сайте.

FlyElephant празднует первый год работы в публичном доступе и анонсирует сотрудничество с HPC-HUB

Время на прочтение2 мин
Количество просмотров2.7K


В ноябре FlyElephant празднует первый год работы в публичном доступе. FlyElephant — это платформа для дата-сайентистов, инженеров и ученых, которая ускоряет бизнес с помощью автоматизации Data Science и Engineering Simulation.
Читать дальше →

data.table: выжимаем максимум скорости при работе с данными в языке R

Время на прочтение9 мин
Количество просмотров16K

На эксклюзивных условиях представляем для вас полный вариант статьи из журнала Хакер, посвященной разработке на R. Под катом вы узнаете, как выжать максимум скорости при работе с табличными данными в языке R.


Читать дальше →

Маленький код для больших данных или Apache Spark за 3 дня

Время на прочтение7 мин
Количество просмотров12K
Пусть Жираф был не прав,
Но виновен не Жираф,
А тот, кто крикнул из ветвей:
«Жираф большой — ему видней!» (с)


Потребовалось оперативно разобраться с технологией Apache Spark заточенную для использования Big Data. В процессе выяснения активно использовал habrahabr, так что попробую вернуть информационный должок, поделившись приобретенным опытом.

А именно: установкой системы с нуля, настройкой и собственно программированием кода решающего задачу обработки данных для создания модели, вычисляющей вероятность банкротства клиента банка по набору таких признаков как сумма кредита, ставка и т.д.

Больших данных вроде как должно быть много, но почему-то не просто найти то злачное место, где их все щупают. Сначала попробовал вариант с ambari, но на моей Window7 валились ошибки настроек сетевого моста. В итоге прокатил вариант с преднастроенной виртуальной машиной от Cloudera (CDH). Просто устанавливаем VirtualBox, запускаем скачанный файл, указываем основные параметры (память, место) и через 5 минут достопочтенный джин Apache Hadoop жаждет ваших указаний.

Несколько слов, почему именно Spark. Насколько я понимаю, ключевые отличия от изначальной MapReduce в том, что данные удерживаются в памяти, вместо сброса на диск, что дает ускорение во много раз. Но, пожалуй, более важны реализации целого ряда статистических функций и удобным интерфейсом для загрузки/обработки данных.

Дальше собственно код для решения следующей задачи. Есть реально большие данные (ибо рука очень устает скролить эти 2000 строк) в формате:



Есть предположение, что дефолт как-то связан с остальными параметрами (кроме первого, к уважаемым Ивановым1…N претензий нет) и нужно построить модель линейной регрессии. Прежде чем начать, стоит оговориться, что это мой первый код на Java, сам я работаю аналитиком и вообще это мой первый запуск Eclipse, настройка Maven и т.д. Так что не стоит ждать изысканных чудес, ниже решение задачи в лоб тем способом, который почему-то заработал. Поехали:
Читать дальше →

Сравнение технологических подходов к решению задач по извлечению данных

Время на прочтение10 мин
Количество просмотров8.5K

Целью статьи является попытка сравнительного анализа основных подходов в решении задач семантического анализа текстов, их различиях и эффективности на уровне концепций, без учета нюансов, комбинаций вариантов и возможных трюков, способствующих улучшению ожидаемого результата.


На сегодняшний день существует огромное количество материалов описывающий те или иные техники решения задач семантического анализа текстов. Это и латентно-семантический анализ, SVM-анализ, «перенос-свертка» и многое другое. Писать очередную статью про обзор и сравнение конкретных алгоритмов – это значит впустую потрать время.


Мне бы хотелось в рамках нескольких статей обсудить базовые идеи и проблемы, лежащие в основе семантического анализа с точки зрения их практического применения, если можно так выразится, с базовой философско-онтологической точки зрения. В какой степени возможно использовать порождающие грамматики для анализа текста? Накапливать ли варианты написания и разного рода "корпуса" или разрабатывать алгоритмы анализа на основании правил?


В рамках нашего рассуждения я осознанно постараюсь уйти от каких-либо терминов и устоявшихся выражений, ибо как говорил У. Куайн – термины это всего лишь имена в рамках онтологий не имеющие никакого практического значения для решения задач логики и понимания чего-либо в частности.[1] Поэтому, с его позволения, будем опираться на единичные дескрипции Рассела, а проще говоря, давать полные описания в ущерб существующим устоявшимся терминам.


Читать дальше →

Встреча любителей больших данных и искусства

Время на прочтение1 мин
Количество просмотров3.9K
Во вторник, 29 ноября 2016 года DI Telegraph и Data-Centric Alliance проведут митап Art of Science.



Art of Science – мероприятие, посвященное анализу данных в искусстве. Наука и искусство – что их связывает? Возможно ли взаимодействие этих двух разных миров? Можно ли с помощью big data, нейронных сетей и методов машинного обучения создавать что-то полезное и прекрасное? Как наука о данных может помочь в решении задач современного искусства? Об этом и многом другом расскажут наши спикеры, представители мира технологического «искусства».
Читать дальше →

Как остановить отток людей с онлайн-курса и заодно попасть на хакатон

Время на прочтение4 мин
Количество просмотров5.8K

Онлайн-курсы, кроме своей удобности и доступности, славятся тем, что на них необычайно легко забивать, что с успехом и делают многие слушатели. Забивать слушателям случается по самым разным причинам — непонятен курс, пропущен дедлайн, не успел набрать баллы, вышел Fallout 4 – у всех свои оправдания. А вот у нас оправданий быть не может: если человек покидает курс, мир теряет потенциального разработчика или специалиста по анализу данных, а ещё киловатт-часы и затраченное нашим героем время.


Самая сложная задача здесь — определить, кто из пользователей убежит, а зная их, уже намного проще предотвратить потери: “предупрежден, значит вооружен”.


В конце статьи вы узнаете, как с помощью решения проблемы попасть на хакатон по анализу данных


image


Читать дальше →

Обучаемся самостоятельно: подборка видеокурсов по Computer Science

Время на прочтение11 мин
Количество просмотров131K
image

Содержание


  1. Введение в Computer Science
  2. Структуры данных и Алгоритмы
  3. Системное программирование
  4. Распределенные системы
  5. Базы данных
  6. Объектно-ориентированный дизайн и разработка софта
  7. Искусственный интеллект
  8. Машинное обучение
  9. Веб-разработка и интернет-технологии
  10. Concurrency
  11. Компьютерные сети
  12. Разработка мобильных приложений
  13. Математика для программистов
  14. Теория информатики и языки программирования
  15. Архитектура компьютера
  16. Безопасность
  17. Компьютерная графика
  18. Работа с изображениями и компьютерное зрение
  19. Интерфейс Человек-Компьютер
  20. Вычислительная биология
  21. Прочее

Глубокое обучение для новичков: тонкая настройка нейронной сети

Время на прочтение21 мин
Количество просмотров106K

Введение


Представляем третью (и последнюю) статью в серии, задуманной, чтобы помочь быстро разобраться в технологии глубокого обучения; мы будем двигаться от базовых принципов к нетривиальным особенностям с целью получить достойную производительность на двух наборах данных: MNIST (классификация рукописных цифр) и CIFAR-10 (классификация небольших изображений по десяти классам: самолет, автомобиль, птица, кошка, олень, собака, лягушка, лошадь, корабль и грузовик).
Читать дальше →

Поиск звуковых аномалий

Время на прочтение6 мин
Количество просмотров8.6K

Попробуем решить задачу поиска аномалий в звуке.
Микрофоны, на данное время, представляют из себя одни из самых распространенных универсальных детекторов. Они маленькие, дешевые, надежные. И они по-умолчанию присутствуют в сотовых телефонах. Их можно использовать практически везде. Поэтому задача обработки звука, не только речи, стоит перед нами прямо сейчас. Это классический пример Low hanging fruit — "низко висящего фрукта". :)


Примеры аномалий звука:


  • Неисправности в работе двигателя.
  • Изменения в погоде: дождь, град, ветер.
  • Аномалии работа сердца, желудка, суставов.
  • Необычный трафик на дороге.
  • Неисправности колесных пар у поезда.
  • Неисправности при посадке и взлете самолета.
  • Аномалии движения жидкости в трубе, в канале.
  • Аномалии движения воздуха в системах кондиционирования, на крыле самолета.
  • Неисправности автомобиля, велосипеда.
  • Неисправности станка, оборудования.
  • Расстроенный музыкальный инструмент.
  • Неправильно взятые ноты песни.
  • Эхолокация кораблей и подводных лодок.
Читать дальше →

Деконструкция мифа о глубоком обучении. Лекция в Яндексе

Время на прочтение13 мин
Количество просмотров39K
Оптимизм по поводу нейронных сетей разделяют не все — или, по крайней мере, уровень такого оптимизма бывает разным. Старший преподаватель факультета компьютерных наук ВШЭ Сергей Бартунов согласен, что нейросетевая область сейчас на подъеме. С другой стороны, он хочет внести в происходящее некоторую ясность, определить реальный потенциал нейросетей. Вне зависимости от точки зрения докладчика, глубокое обучение и правда не проникает в нашу сферу совсем уж стремительными темпами. Традиционные методы обучения всё ещё работают и не обязательно будут вытеснены машинным интеллектом в ближайшей будущем.


Под катом — расшифровка лекции и часть слайдов Сергея.

Программа по Deep Learning

Время на прочтение3 мин
Количество просмотров7.1K
Хабр, привет! Из уважения к тем из вас, кто на дух не переносит здесь рекламу, сразу сообщим — да, это рекламный пост. Можно проскроллить дальше. Тем, кто считает, что реклама не всегда вредна и порой помогает принимать нам важные решения, добро пожаловать под кат.
Читать дальше →

Оптимизация нейросетевой платформы Caffe для архитектуры Intel

Время на прочтение22 мин
Количество просмотров10K
Современные программы, претендующие на звание эффективных, должны учитывать особенности аппаратного обеспечения, на котором они будут исполняться. В частности, речь идёт о многоядерных процессорах, например, таких, как Intel Xeon и Intel Xeon Phi, о больших размерах кэш-памяти, о наборах инструкций, скажем, Intel AVX2 и Intel AVX-512, позволяющих повысить производительность вычислений.


Еле удержались, чтобы не пошутить про руссиано)

Вот, например, Caffe – популярная платформа для разработки нейронных сетей глубокого обучения. Её создали в Berkley Vision and Learning Center (BVLC), она пришлась по душе сообществу независимых разработчиков, которые вносят посильный вклад в её развитие. Платформа живёт и развивается, доказательство тому – статистика на странице проекта в GitHub. Caffe называют «быстрой открытой платформой для глубокого обучения». Можно ли ускорить такой вот «быстрый» набор инструментов? Задавшись этим вопросом, мы решили оптимизировать Caffe для архитектуры Intel.
Читать дальше →

Ближайшие события

Искусственный интеллект, вызовы и риски – глазами инженера

Время на прочтение11 мин
Количество просмотров18K
Добрый день, коллеги. Сегодня хочется трезво посмотреть глазами инженера на так популярные сейчас искусственный интеллект и Deep learning, упорядочить, выстроить факты и выработать выигрышную стратегию – как с этим … взлететь, пролететь и не упасть кому-нибудь на голову? Потому-что, когда дело от лабораторных моделей на python/matplotlib/numpy или lua доходит до высоконагруженного production в клиентском сервисе, когда ошибка в исходных данных сводит на нет все усилия – становится не то, что весело, а даже начинается нумерологический средневековый экстаз и инженеры начинают сутки напролет танцевать, в надежде излечиться от новомодной чумы )


Танцующие инженеры, тщетно надеющиеся исцелиться
Читать дальше →

Ю. Шмидхубер: «Прекрасно быть частью будущего искусственного интеллекта»

Время на прочтение7 мин
Количество просмотров11K


В последние дни сентября в Амстердаме проходила конференция по графическим технологиям GTC EUROPE 2016. Профессор Юрген Шмибдхубер представлял свою презентацию, как научный директор IDSIA, швейцарской лаборатории, где он с коллегами занимается исследованиями в области искусственного интеллекта.

Главный тезис выступления — настоящий искусственный интеллект изменит все уже в скором времени. По большей части статья, которую вы сейчас читаете, подготовлена по материалам презентации профессора Шмидхубера.
Читать дальше →

Сотворение мира Опыт создания разумной жизни своими руками

Время на прочтение23 мин
Количество просмотров28K
Иногда проводишь день в попытках без использования терминов «рекурсивный вызов» и «идиоты» объяснить главному бухгалтеру, почему на самом деле простое изменение учетной системы затягивается почти на неделю из-за орфографической ошибки, допущенной кем-то в коде в 2009 году. В такие дни хочется пооборвать руки тому умнику, который сотворил этот мир, и переписать все с ноля.

image

TL;DR
Под катом история о том, как я в качестве практики для изучения Python разрабатываю свою библиотеку для агентного моделирования с машинным обучением и богами.

Ссылка на github. Для работы из коробки нужен pygame. Для ознакомительного примера понадобится sklearn.
Читать дальше →

Простыми словами: как работает машинное обучение

Время на прочтение7 мин
Количество просмотров42K
В последнее время все технологические компании твердят о машинном обучении. Мол, столько задач оно решает, которые раньше только люди и могли решить. Но как конкретно оно работает, никто не рассказывает. А кто-то даже для красного словца машинное обучение называет искусственным интеллектом.


Как обычно, никакой магии тут нет, все одни технологии. А раз технологии, то несложно все это объяснить человеческим языком, чем мы сейчас и займемся. Задачу мы будем решать самую настоящую. И алгоритм будем описывать настоящий, подпадающий под определение машинного обучения. Сложность этого алгоритма игрушечная — а вот выводы он позволяет сделать самые настоящие.
Читать дальше →

Глубокое обучение для новичков: распознаем изображения с помощью сверточных сетей

Время на прочтение27 мин
Количество просмотров105K

Введение


Представляем вторую статью в серии, задуманной, чтобы помочь быстро разобраться в технологии глубокого обучения; мы будем двигаться от базовых принципов к нетривиальным особенностям с целью получить достойную производительность на двух наборах данных: MNIST (классификация рукописных цифр) и CIFAR-10 (классификация небольших изображений по десяти классам: самолет, автомобиль, птица, кошка, олень, собака, лягушка, лошадь, корабль и грузовик).


Читать дальше →

Приглашаем на Moscow Data Science Meetup 25 ноября

Время на прочтение1 мин
Количество просмотров4.5K


25 ноября в московском офисе Mail.Ru Group пройдет традиционная встреча сообщества Moscow Data Science. Участники поделятся профессиональным опытом решения практических задач анализа данных и пообщаются в неформальной обстановке. Встреча будет посвящена глубокому обучению. Присоединяйтесь!
Читать дальше →

Реализация классификации текста свёрточной сетью на keras

Время на прочтение9 мин
Количество просмотров24K
Речь, как ни странно, пойдёт о использующем свёрточную сеть классификаторе текстов (векторизация отдельных слов — это уже другой вопрос). Код, тестовые данные и примеры их применения — на bitbucket (уперся в ограничения размера от github и предложение применить Git Large File Storage (LFS), пока не осилил предлагаемое решение).

Наборы данных


Использованы конвертированные наборы: reuters — 22000 записей, watson-й — 530 записей, и ещё 1 watson-й — 50 записей. Кстати, не отказался бы от подкинутого в комменты/ЛС (но лучше таки в комменты) набора текстов на русском.

Устройство сети


За основу взята одна реализация описанной тут сети. Код использованной реализации на github.

В моём случае — на входе сети находятся векторы слов (использована gensim-я реализация word2vec). Структура сети изображена ниже:


Вкратце:

  • Текст представляется как матрица вида word_count x word_vector_size. Векторы отдельных слов — от word2vec, о котором можно почитать, например, в этом посте. Так как заранее мне неизвестно, какой текст подсунет пользователь — беру длину 2 * N, где N — число векторов в длиннейшем тексте обучающей выборки. Да, ткнул пальцев в небо.
  • Матрица обрабатывается свёрточными участками сети (на выходе получаем преобразованные признаки слова)
  • Выделенные признаки обрабатываются полносвязным участком сети

Стоп слова отфильтровываю предварительно (на reuter-м dataset-е это не сказывалось, но в меньших по объему наборах — оказало влияние). Об этом ниже.
Читать дальше →

Вклад авторов