Обновить
61.3

SQL *

Формальный непроцедурный язык программирования

Сначала показывать
Порог рейтинга
Уровень сложности

Эпизод 1: «Скобка, паб и виски с валидацией»

Уровень сложностиПростой
Время на прочтение3 мин
Охват и читатели499

KafkaRail гудел на фоне.

Паб The Broken Tag, где начиналось утро героев, только просыпался — запах старого эля, крошки лог‑файлов, и бильярдный стол под тусклым светом прожектора. Через узел маршрута /corp/news метропоезд пронёсся, как push‑уведомление на рассвете. День в Киберляндии начинался.

JSON откинул капюшон куртки BitStone Protocol с QR‑патчем на рукаве, кивнул Mr. Parseley и заказал, как обычно, Schema Fresca. Он прошёл к бильярдному столу английского пула, стоявшему под старым плакатом «Keep Calm and Close Tags», где RAMmy спорил с TryCatch о синтаксисе ударов.

Читать далее

Как настроить ежедневный алертинг по маркетинговым метрикам с помощью SQL

Уровень сложностиСредний
Время на прочтение10 мин
Охват и читатели1.7K

Привет, Хабр! На связи Антон Прыгин, аналитик данных в Garage Eight. Расскажу, как с помощью простых SQL-запросов и базовых математических методов получилось построить систему ежедневного мониторинга и алертинга маркетинговых метрик, которая работает в связке с таск-трекером.

Погнали

Учимся читать SQL SELECT

Уровень сложностиПростой
Время на прочтение21 мин
Охват и читатели12K

Я отчётливо помню, как сидел на втором курсе на лабах по БД и долго и мучительно методом научного тыка подбирал порядок слов в SELECT-запросе с GROUP BY, чтобы он вернул нужный мне преподу результат. Потому что я не понимал, как работает SELECT, хотя был прилежным (на программистских курсах) студентом, ходил на все лекции и делал лабы за себя и пару "тех парней".

Двадцать лет спустя, когда я встал по ту сторону баррикад и начал сам вести лабы по БД, я столкнулся с той же самой проблемой уже у своих студентов. И, так как за двадцать лет я всё-таки понял, как работает SELECT, то придумал для них способ объяснения, который работает хорошо (в моей практике).

Читать далее

Витрина данных: сверка с эталоном

Уровень сложностиСредний
Время на прочтение5 мин
Охват и читатели1.3K

Одним из этапов разработки витрин данных является тестирование результата и подтверждение корректности разработанного функционала. При этом организовано тестирование может быть по-разному.

Определим несколько видов тестирования:

1.     Технические тесты

Техническими тестами легко можно проверить корректность сборки витрины. Из основных видов технических тестов можно выделить:

·       Дубли - проверка на наличие дублей по ключу

·       Разрывы - проверка на разрывы в истории

·       Перекосы - проверка наложения исторических записей друг на друга

·       Даты - проверка корректности формирования дат

·       NULL в ключе - проверка NULL в ключевых и обязательных к заполнению полях

Подробно на этих тестах останавливаться не будем, информация по ним есть в открытом доступе.

2.     Бизнес-тесты

Это набор тестовых запросов, направленных на выявление ошибок в бизнес-данных. Как правило набор бизнес-тестов предоставляет владелец объекта.

Бизнес-тестов может быть великое множество, здесь все зависит от вашего бизнес-домена и от конкретных требований к витрине.

Приведу примеры некоторых бизнес-тестов:

Читать далее

Ошибки, которые можно избежать в SQL: грабли начинающего аналитика

Уровень сложностиПростой
Время на прочтение5 мин
Охват и читатели4.6K

Привет Хабр! Меня зовут Алёна, я middle-продуктовый аналитик. В свободное время я рассказываю о реальных задачах с работы и делюсь материалами для тех, кто хочет стать аналитиком.

Если ты только начинаешь писать SQL-запросы — вот твой анти-фейл лист: с примерами, пояснениями и короткими лайфхаками, как не получить ошибку из-за лишнего JOIN или пропущенного WHERE.

Читать далее

Анализ плана выполнения запроса с оконной функцией в SQL Server (+бонус)

Уровень сложностиСложный
Время на прочтение7 мин
Охват и читатели2.7K

В статье подробно разбирается план выполнения запроса с оконной функцией в MS SQL Server, проводится сравнительный тест производительности с альтернативным запросом.

Статья будет полезна разработчикам, работающим с аналитическими запросами в SQL Server, а также всем, кто хочет глубже понять логику оптимизатора и влияние различных факоров на планы выполнения.

Читать далее

Нашел, проверил, убедил: как мы организовали генерацию SQL-запросов, проверку сложных данных и при чем здесь Allure

Время на прочтение22 мин
Охват и читатели2.5K

Привет, Хабр!

Я, Михаил Герасимов, инженер РСХБ-Интех. Уже два года занимаюсь автоматизацией тестирования, и за это время успел написать (и переписать) немало SQL-запросов. Вместе с моим коллегой Михаилом Палыгой мы развиваем инструменты для автоматизированного тестирования, и сегодня расскажем вам о том как мы справляемся с построением сложных SQL-запросов и проверкой объектов в базе данных, на примере нашей библиотеки CheckMateDB для автоматизации тестирования банковской системы ЦФТ-Банк.

В статье опишем проблемы, с которыми сталкивались при ручном написании SQL-запросов и проверке данных: дублирование кода, сложность поддержки, отсутствие единого стиля и низкая информативность тестов. Для решения этих проблем мы разработали инструмент QueryBuilder, который позволяет динамически генерировать SQL-запросы с помощью Java-кода.

Мы создали иерархию классов CriteriaBasic и Table для удобного описания критериев поиска данных в базе, используя паттерн fluent interface. Также мы разработали кастомные классы проверок на базе AssertJ с поддержкой Allure-шагов, которые позволяют проверять сложные многоуровневые объекты с возможностью погружения во вложенные структуры. Для облегчения рутинной работы создали плагин, автоматически генерирующий классы DTO и Table на основе структуры базы данных. Библиотека интегрирована с Hibernate через DaoCommon, что обеспечивает удобное выполнение SQL-запросов и управление сессиями. Результатом стало существенное улучшение читаемости тестов, повышение переиспользуемости кода, стандартизация подхода к тестированию и создание информативных Allure-отчетов.

Читать далее

Пишем движок SQL на Spark. Часть 8: CREATE FUNCTION

Уровень сложностиСредний
Время на прочтение12 мин
Охват и читатели850
В предыдущих сериях ( 1 2 3 4 5 6 7 Ы ) рассмотрели, как написать на Java собственный интерпретатор объектно-ориентированного диалекта SQL, заточенный на задачи подготовки и трансформации наборов данных, и работающий как тонкая прослойка поверх Spark RDD API.

Штука получилась довольно продвинутая, с поддержкой императивщины типа циклов/ветвлений/переменных, и даже с поддержкой пользовательских процедур. И в плане этой самой императивщины расширяемая: может импортировать функции из Java classpath, равно как и операторы выражений. То есть, если необходимо, можно написать функцию на Java, или определить новый оператор, и использовать потом в любом выражении на SQL.


Круто? Ещё как круто. Но как-то однобоко. Если в языке у нас поддерживаются функции, то почему бы не дать нашим пользователям определять их самостоятельно? Вот прямо через CREATE FUNCTION? Тем более, что вся необходимая для этого инфраструктура уже вовсю присутствует. Да и процедуры на уровне интерпретатора у нас уже поддерживаются ведь…



Функция для затравки.

Читать дальше →

Трассировка запросов в Postgres с расширением pg_trace

Уровень сложностиСредний
Время на прочтение11 мин
Охват и читатели2.8K

В рамках статьи расскажем о расширении pg_trace, предназначенном для сбора трассировок запросов в PostgreSQL, соберем трассировку на реальном примере работы приложения, оценим влияние сбора трассировки на производительность и агрегируем данные трассировки.

Читать далее

Записки оптимизатора 1С (ч.12).  СрезПоследних в 1C: Предприятие на PostgreSQL. Почему же так долго?

Уровень сложностиСредний
Время на прочтение11 мин
Охват и читатели5K

Этой проблеме уже не менее 15 лет.

На входе: большая база на PostgreSQL. Вполне себе типовые отчеты с не менее типовыми запросами 1C, содержащие обращение к виртуальной таблице СрезПоследних какого-нибудь регистра сведений с большим количеством строк, выполняются неприлично длительное время. Вплоть до нескольких часов.

Причина – оптимизатор строит неверный план запроса. Причем тот же запрос на MS SQL выполняется быстро и оптимизатор не ошибается.

Сейчас будем разбираться в чем ошибается оптимизатор и какие пути решения тут возможны.

Читать далее

Агрегированная витрина для дэшборда

Уровень сложностиСредний
Время на прочтение3 мин
Охват и читатели900

Кажется, это не особо сложная задача - построить витрину для дэшборда, однако, я хочу отметить одну важную особенность при построении агрегированной витрины.

Читать далее

T-SQL в .NET Core EF Core: Гибридный подход к производительности и гибкости (Переосмысление с учетом обсуждения)

Уровень сложностиСредний
Время на прочтение11 мин
Охват и читатели2.8K

Секретное оружие в .NET Core: Почему вы игнорируете мощь T-SQL?

Ваши LINQ-запросы становятся громоздкими? Производительность упирается в потолок? Возможно, вы упускаете нечто важное.

Эта статья — приглашение взглянуть на привычные инструменты под новым углом. Мы исследуем гибридный подход, который позволяет использовать весь потенциал Microsoft SQL Server, выходя за рамки стандартного взаимодействия через EF Core. Узнайте, как T-SQL может упростить сложные задачи, повысить производительность и сделать вашу архитектуру более гибкой.

Это не просто технический трюк, а переосмысление роли СУБД в современном приложении. Готовы узнать, как использовать "скрытые" возможности MSSQL и почему это может быть именно то, что нужно вашему проекту?

Читать об этом

Массивы вместо self-join: как писать быстрые запросы в ClickHouse

Уровень сложностиПростой
Время на прочтение5 мин
Охват и читатели3.6K

Привет, Хабр! Я — Максим Шитилов, продуктовый аналитик в каршеринг-сервисе Ситидрайв. Каждый день мы обрабатываем большие объёмы данных, и ClickHouse — один из наших ключевых инструментов. Если вы когда-либо пытались связать события с временными интервалами или рассчитать метрику за определённое окно после события, то наверняка сталкивались с типичной конструкцией на self-join. Вроде бы работает, но запрос становится громоздким, ресурсоёмким и плохо масштабируется.

В этой статье я расскажу, как решать такие задачи проще и эффективнее — с помощью массивов, arrayFilter и arrayMap. Покажу, как отказаться от self-join’ов без потери точности, ускорить обработку и упростить код. Примеры — из реальных бизнес-кейсов: телеметрия, аренды, GMV и события, которые нужно связать между собой по времени. Так как схожих решений на просторах интернета я не нашёл, предлагаю назвать этот подход «Array Join Pattern». Если метод окажется полезным для сообщества, то такой паттерн легко будет найти другим аналитикам и девам.

Читать далее

Ближайшие события

PondPilot: как мы сделали локальный SQL-редактор в браузере на DuckDB и WASM

Уровень сложностиПростой
Время на прочтение3 мин
Охват и читатели1.6K

Любой, кто хоть раз пытался «по-быстрому» проанализировать CSV-файл или прототип БД, сталкивался с выбором из неудобств: открывать в Excel, запускать Jupyter, возиться с pandas, или поднимать Postgres/ClickHouse ради пары запросов. Мне показалось странным, что в 2025 году до сих пор нет удобной zero-setup SQL-песочницы для локальных данных.

Так родился PondPilot - open-source инструмент для анализа данных, работающий прямо в браузере, без серверов и настройки.

Читать далее

Быстрый старт в маскировании данных PostgreSQL с инструментом pg_anon

Уровень сложностиПростой
Время на прочтение9 мин
Охват и читатели2.2K

В этой статье поговорим о не самом гламурном, но жизненно важном — маскировании данных. Маскирование может касаться имён, телефонов, номеров карт, медицинских диагнозов и другой чувствительной информации. Если ваша компания до сих пор передает данные подрядчикам или аналитикам как они есть в базе, это в один «прекрасный» момент обязательно обернётся репутационной или финансовой проблемой для бизнеса.

В этой статье разберём, зачем нужно маскирование, какие данные требуют защиты, и представим opensource-инструмент, который поможет решить эти задачи гибко и эффективно.

Читать далее

Начало пути в тысячу миль: от Excel до SSRS

Уровень сложностиПростой
Время на прочтение5 мин
Охват и читатели2.4K

Мне 25, последние несколько лет я работаю в аналитическом отделе одного из департаментов Правительства города Москвы. Занимаюсь сведением бесконечных таблиц с регулярной отчетностью и подготовкой презентаций на самые разнообразные сюжеты.

Назвать ту работу — работой мечты, сложно, как ни крути. Трудозатраты на сбор, обработку и визуализацию информации были так велики, что уход с работы в десять вечера был для меня настоящим праздником. Именно этот «спартанский» опыт вкупе с желанием доказать себе, что разобраться можно в чем угодно, побудил меня к изучению доселе неведомого для мира баз данных, языка запросов SQL, BI и ETL инструментов.

Как вы, возможно, уже поняли, в аналитику я попал не по зову сердца, а по воле случая. Хантер Томпсон внутри меня, конечно, предпочел бы писать колонки в модные журналы, вести собственный блог о литературе или теннисе, в который я играю с детства, ну или посвятить себя еще какой-то творческой ерундистике, окрыляющей не хуже Red Bull Cola. Не смейтесь, исчезновение этого напитка с полок магазинов стало для меня в свое время настоящей трагедией.

Увы, каждый раз, находясь в поиске работы, здравый смысл неустанно напоминал мне о том, что он — главный враг творчества (Пабло Пикассо был во многом прав), а карьера фрилансера, вернее всего, приведет меня на социальное дно, нежели чем на вершину карьерной лестницы.

Итак, осознание того, что автоматизация процессов востребована на рынке и облегчает собственное существование, становится стартовой точкой долгого пути от полного непонимания азов работы с базами данных до уверенного владения всеми необходимыми инструментами для управления подразделением, обеспечивающим data-driven подход к решению задач внутри компании.

Читать далее

85 вопросов на собеседовании разработчика QlikView/Qlik Sense (с ответами)

Уровень сложностиСредний
Время на прочтение56 мин
Охват и читатели3.2K

Всем привет! Меня зовут Александр Андреев, я старший SRE дата-инженер и бывший BI/DWH-разработчик с многолетним опытом работы с BI‑платформой QlikView/Qlik Sense. В своей статье‑шпаргалке я хочу поделиться с вами практически всеми возможными вопросами и ответами с собеседований на должность Qlik‑разработчика. Данная шпаргалка гарантированно закроет 99% возможных вопросов на собеседованиях на позиции, где упоминается Qlik в качестве BI‑системы. Таких позиций с каждым годом все больше, причем знание Qlik в качестве BI‑системы требуют как с чистых «биайщиков», так и с дата‑инженеров на некоторых сеньорских и lead позициях.

Подготовка к собеседованию на позицию с QlikView/Qlik Sense в качестве BI‑системы требует глубокого понимания как базовых концепций, так и продвинутых техник работы с платформой. В этой статье я собрал 85 наиболее важных вопросов, которые помогут вам систематизировать знания и успешно пройти техническое интервью.

Читать далее

Из бариста в программиста. Как я освоила SQL за неделю и стала тимлидом в IT-компании меньше, чем за год

Уровень сложностиПростой
Время на прочтение6 мин
Охват и читатели87K

Привет, меня зовут Саша Ковалёва. За последние пару лет я: переехала из Владивостока в Москву, освоила SQL, устроилась в IT-компанию без профильного образования и выросла до тимлида. Сейчас продолжаю работать с базами данных в компании, которая разрабатывает low-code BPM-систему, а в свободное время занимаюсь вокалом и реслингом.

В этой статье я расскажу, как искала свой путь в IT-сфере и по каким материалам училась. Надеюсь, мой опыт будет полезен тем, кто начинает карьеру в IT.

Читать далее

SQL: бесплатные курсы и тренажёры, которые стоит попробовать

Уровень сложностиПростой
Время на прочтение4 мин
Охват и читатели42K

Всем привет! Это команда Яндекс Практикума. Делимся подборкой полезных материалов для изучения SQL от экспертов курса «Специалист по Data Science».

В этой подборке вы найдёте ресурсы, которые помогут освоить основы, потренироваться в написании запросов и расширить знания о работе с базами данных. Многие из них интерактивные, что позволяет сразу перейти к практике и углубиться в интересующие темы.

Материалы подойдут как тем, кто изучает SQL с нуля, так и всем, кто хочет освежить или систематизировать знания.

Читать далее

Правильный порядок колонок в B-tree индексах PostgreSQL или правило ESR

Уровень сложностиСредний
Время на прочтение9 мин
Охват и читатели5.8K

Когда в проекте используется составной B-tree индекс, важно не просто "создать индекс", а сделать это правильно — иначе запросы могут не только не ускориться, но и начать работать медленнее. Возникает логичный вопрос: как выбрать порядок колонок, чтобы индекс действительно работал эффективно? Брутфорсом? По интуиции? По селективности?

В этой статье я расскажу, как подходить к построению составных индексов в PostgreSQL, на что реально влияет порядок колонок. Также разберём простое правило ESR, которое помогает упростить выбор и получать стабильный прирост производительности на всех стендах.

Читать далее

Вклад авторов