Как стать автором
Обновить
0
Александр Романычев @AlexandrRomanychevread⁠-⁠only

Java Developer

Отправить сообщение

Лучшие практики создания отказоустойчивых систем

Уровень сложностиСредний
Время на прочтение23 мин
Количество просмотров9.2K

Разработка отказоустойчивых систем представляет собой важнейшую компетенцию для инженеров, занятых созданием распределённых и масштабируемых приложений. Под отказоустойчивостью понимается способность системы сохранять работоспособность в условиях сбоев отдельных компонентов или недоступности внешних сервисов. В данной статье рассматриваются практики обеспечения устойчивости на уровне программного кода, в частности в контексте серверных приложений, реализованных на языках Python и Java.

Особое внимание уделяется методам повышения надёжности при временных сбоях, включая: повторные попытки выполнения операций с экспоненциальной задержкой (exponential backoff), использование шаблона circuit breaker, механизмы плавной деградации функциональности (graceful degradation), задание таймаутов, реализация идемпотентности, ограничение одновременных вызовов (bulkhead isolation), а также внедрение систем мониторинга и алертинга. Приводимые примеры охватывают типовые сценарии — обращение к внешним API, взаимодействие с базами данных и выполнение фоновых задач.

Читать далее

Отказоустойчивость в MinIO

Уровень сложностиПростой
Время на прочтение14 мин
Количество просмотров5.3K

Simple Storage Service или S3 — сервис (и одновременно протокол) для хранения данных большого объёма. Для работы использует API поверх HTTP, который позволяет загружать или получать объекты из хранилища.

В проектах с приватной инфраструктурой часто возникает потребность в организации on-premise S3-хранилища. Популярное решение в таком случае это MinIO — удобная и довольно простая в использовании реализация сервиса S3.  Когда нам в RUTUBE потребовалось S3, мы не стали долго думать и взяли MinIO, потому что он стильный, модный, молодежный хорошо себя зарекомендовал на рынке, хорошо документирован и прост в первоначальной настройке и эксплуатации. 

В этой статье поделюсь своим опытом использования MinIO, сделав акцент на отказоустойчивости и сохранности данных в случае инцидентов разной степени — от выпадения диска до пожара в цоде.

Читать далее

Теория шардирования

Время на прочтение26 мин
Количество просмотров149K
Кажется, мы так глубоко погрузились в дебри highload-разработки, что просто не задумываемся о базовых проблемах. Взять, например, шардирование. Чего в нем разбираться, если в настройках базы данных можно написать условно shards = n, и все сделается само. Так-то, он так, но если, вернее когда, что-то пойдет не так, ресурсов начнет по-настоящему не хватать, хотелось бы понимать, в чем причина и как все починить.

Короче, если вы контрибьютили свою альтернативную реализацию хэширования в Cassandra, то вряд ли тут для вас найдутся откровения. Но если нагрузка на ваши сервисы уже прибывает, а системные знания за ней не поспевают, то милости просим. Великий и ужасный Андрей Аксёнов (shodan) в свойственной ему манере расскажет, что шардить плохо, не шардить — тоже плохо, и как это внутри устроено. А еще совершенно случайно одна из частей рассказа про шардинг вообще не совсем про шардинг, а черт знает про что — как объекты на шарды мапить.

Фотография котиков (хоть они случайно и оказались щеночками) уже как бы отвечает на вопрос, зачем это всё, но начнем последовательно.

System Design для начинающих: всё, что вам нужно. Часть 4

Уровень сложностиПростой
Время на прочтение12 мин
Количество просмотров14K

Продолжаем наращивать базу знаний по System Design. В этот раз освятим использование BLOB Storage, CDN, Message Broker. Посмотрим на основные концепции и области применения этих важных компонентов при проектирование высокодоступных отказоустойчивых систем.

Читать далее

System Design для начинающих: всё, что вам нужно. Часть 3

Уровень сложностиПростой
Время на прочтение10 мин
Количество просмотров20K

Вам не нужно изучать какую‑либо теорию, кроме этой статьи, чтобы начать собеседоваться. После прочтения смело приступайте к решению типовых System Design задач.

Изучая System Design, вы часто видите только теоретические материалы. В этой статье я постарался показать в том числе практическую реализацию многих вещей, чтобы вы не просто готовились к собеседованиям, но и знали, как эти вещи используются в реальном мире.

Читать далее

System Design для начинающих: всё, что вам нужно. Часть 2

Уровень сложностиПростой
Время на прочтение11 мин
Количество просмотров19K

Вам не нужно изучать какую‑либо теорию, кроме этой статьи, чтобы начать собеседоваться. После прочтения смело приступайте к решению типовых System Design задач.

Изучая System Design, вы часто видите только теоретические материалы. В этой статье я постарался показать в том числе практическую реализацию многих вещей, чтобы вы не просто готовились к собеседованиям, но и знали, как эти вещи используются в реальном мире.

Читать далее

System Design для начинающих: всё, что вам нужно. Часть 1

Уровень сложностиПростой
Время на прочтение12 мин
Количество просмотров51K

Вам не нужно изучать какую‑либо теорию, кроме этой статьи, чтобы начать собеседоваться. После прочтения смело приступайте к решению типовых System Design задач.

Изучая System Design, вы часто видите только теоретические материалы. В этой статье я постарался показать в том числе практическую реализацию многих вещей, чтобы вы не просто готовились к собеседованиям, но и знали, как эти вещи используются в реальном мире.

Читать далее

Блокировки в PostgreSQL: 4. Блокировки в памяти

Время на прочтение11 мин
Количество просмотров34K
Напомню, что мы уже поговорили о блокировках отношений, о блокировках на уровне строк, о блокировках других объектов (включая предикатные), и о взаимосвязи разных типов блокировок.

Сегодня я заканчиваю этот цикл статьей про блокировки в оперативной памяти. Мы поговорим о спин-блокировках, легких блокировках и закреплении буфера, а также про средства мониторинга ожиданий и семплирование.


Читать дальше →

Блокировки в PostgreSQL: 3. Блокировки других объектов

Время на прочтение15 мин
Количество просмотров34K
Мы уже поговорили о некоторых блокировках на уровне объектов (в частности — о блокировках отношений), а также о блокировках на уровне строк, их связи с блокировками объектов и об очереди ожидания, не всегда честной.

Сегодня у нас сборная солянка. Начнем с взаимоблокировок (вообще-то я собирался рассказать о них еще в прошлый раз, но та статья и так получилась неприлично длинной), затем пробежимся по оставшимся блокировкам объектов, и в заключение поговорим про предикатные блокировки.

Взаимоблокировки


При использовании блокировок возможна ситуация взаимоблокировки (или тупика). Она возникает, когда одна транзакция пытается захватить ресурс, уже захваченные другой транзакцией, в то время как другая транзакция пытается захватить ресурс, захваченный первой. Это проиллюстрировано на левом рисунке ниже: сплошные стрелки показывают захваченные ресурсы, пунктирные — попытки захватить уже занятый ресурс.

Визуально взаимоблокировку удобно представлять, построив граф ожиданий. Для этого мы убираем конкретные ресурсы и оставляем только транзакции, отмечая, какая транзакция какую ожидает. Если в графе есть контур (из вершины можно по стрелкам добраться до нее же самой) — это взаимоблокировка.


Читать дальше →

Блокировки в PostgreSQL: 2. Блокировки строк

Время на прочтение14 мин
Количество просмотров81K
В прошлый раз мы говорили о блокировках на уровне объектов, в частности — о блокировках отношений. Сегодня посмотрим, как в PostgreSQL устроены блокировки строк и как они используются вместе с блокировками объектов, поговорим про очереди ожидания и про тех, кто лезет без очереди.



Блокировки строк


Устройство


Напомню несколько важных выводов из прошлой статьи.

  • Блокировка должна существовать где-то в разделяемой памяти сервера.
  • Чем выше гранулярность блокировок, тем меньше конкуренция (contention) среди одновременно работающих процессов.
  • С другой стороны, чем выше гранулярность, тем больше места в памяти занимают блокировки.

Нам безусловно хочется, чтобы изменение одной строки не приводило к блокировке других строк той же таблицы. Но и заводить на каждую строку по собственной блокировке мы не можем себе позволить.

Есть разные пути решения этой проблемы. В некоторых СУБД происходит повышение уровня блокировки: если блокировок уровня строк становится слишком много, они заменяются одной более общей блокировкой (например, уровня страницы или всей таблицы).

Как мы увидим позже, в PostgreSQL такой механизм тоже применяется, но только для предикатных блокировок. С блокировками строк дело обстоит иначе.
Читать дальше →

Блокировки в PostgreSQL: 1. Блокировки отношений

Время на прочтение14 мин
Количество просмотров116K
Два предыдущих цикла статей были посвящены изоляции и многоверсионности и журналированию.

В этом цикле мы поговорим о блокировках (locks). Я буду придерживаться этого термина, но в литературе может встретиться и другой: замóк.

Цикл будет состоять из четырех частей:

  1. Блокировки отношений (эта статья);
  2. Блокировки строк;
  3. Блокировки других объектов и предикатные блокировки;
  4. Блокировки в оперативной памяти.

Материал всех статей основан на учебных курсах по администрированию, которые делаем мы с Павлом pluzanov, но не повторяет их дословно и предназначен для вдумчивого чтения и самостоятельного экспериментирования.
Читайте и другие серии.

Индексы:

  1. Механизм индексирования;
  2. Интерфейс метода доступа, классы и семейства операторов;
  3. Hash;
  4. B-tree;
  5. GiST;
  6. SP-GiST;
  7. GIN;
  8. RUM;
  9. BRIN;
  10. Bloom.

Изоляция и многоверсионность:

  1. Изоляция, как ее понимают стандарт и PostgreSQL;
  2. Слои, файлы, страницы — что творится на физическом уровне;
  3. Версии строк, виртуальные и вложенные транзакции;
  4. Снимки данных и видимость версий строк, горизонт событий;
  5. Внутристраничная очистка и HOT-обновления;
  6. Обычная очистка (vacuum);
  7. Автоматическая очистка (autovacuum);
  8. Переполнение счетчика транзакций и заморозка.

Журналирование:

  1. Буферный кеш;
  2. Журнал предзаписи — как устроен и как используется при восстановлении;
  3. Контрольная точка и фоновая запись — зачем нужны и как настраиваются;
  4. Настройка журнала — уровни и решаемые задачи, надежность и производительность.


Читать дальше →

WAL в PostgreSQL: 4. Настройка журнала

Время на прочтение17 мин
Количество просмотров37K
Итак, мы познакомились с устройством буферного кеша и на его примере поняли, что когда при сбое пропадает содержимое оперативной памяти, для восстановления необходим журнал предзаписи. Размер необходимых файлов журнала и время восстановления ограничены благодаря периодически выполняемой контрольной точке.

В предыдущих статьях мы уже посмотрели на довольно большое число важных настроек, так или иначе относящихся к журналу. В этой статье (последней в этом цикле) мы рассмотрим те вопросы настройки, которые еще не обсуждались: уровни журнала и их назначение, а также надежность и производительность журналирования.

Уровни журнала


Основная задача журнала предзаписи — обеспечить возможность восстановления после сбоя. Но, если уж все равно приходится вести журнал, его можно приспособить и для других задач, добавив в него некоторое количество дополнительной информации. Есть несколько уровней журналирования. Они задаются параметром wal_level и организованы так, что журнал каждого следующего уровня включает в себя все, что попадает в журнал предыдущего уровня, плюс еще что-то новое.
Читать дальше →

WAL в PostgreSQL: 3. Контрольная точка

Время на прочтение12 мин
Количество просмотров43K
Мы уже познакомились с устройством буферного кеша — одного из основных объектов в разделяемой памяти, — и поняли, что для восстановления после сбоя, когда содержимое оперативной памяти пропадает, нужно вести журнал предзаписи.

Нерешенная проблема, на которой мы остановились в прошлый раз, состоит в том, что неизвестно, с какого момента можно начинать проигрывание журнальных записей при восстановлении. Начать с начала, как советовал Король из Алисы, не получится: невозможно хранить все журнальные записи от старта сервера — это потенциально и огромный объем, и такое же огромное время восстановления. Нам нужна такая постепенно продвигающаяся вперед точка, с которой мы можем начинать восстановление (и, соответственно, можем безопасно удалять все предшествующие журнальные записи). Это и есть контрольная точка, о которой сегодня пойдет речь.

Контрольная точка


Каким свойством должна обладать контрольная точка? Мы должны быть уверены, что все журнальные записи, начиная с контрольной точки, будут применяться к страницам, записанным на диск. Если бы это было не так, при восстановлении мы могли бы прочитать с диска слишком старую версию страницы и применить к ней журнальную запись, и тем самым безвозвратно повредили бы данные.
Читать дальше →

WAL в PostgreSQL: 2. Журнал предзаписи

Время на прочтение8 мин
Количество просмотров71K
В прошлый раз мы познакомились с устройством одного из важных объектов разделяемой памяти, буферного кеша. Возможность потери информации из оперативной памяти — основная причина необходимости средств восстановления после сбоя. Сегодня мы поговорим про эти средства.

Журнал


Увы, чудес не бывает: чтобы пережить потерю информации в оперативной памяти, все необходимое должно быть своевременно записано на диск (или другое энергонезависимое устройство).

Поэтому сделано вот что. Вместе с изменением данных ведется еще и журнал этих изменений. Когда мы что-то меняем на странице в буферном кеше, мы создаем в журнале запись об этом изменении. Запись содержит минимальную информацию, достаточную для того, чтобы при необходимости изменение можно было повторить.

Чтобы это работало, журнальная запись в обязательном порядке должна попасть на диск до того, как туда попадет измененная страница. Отсюда и название: журнал предзаписи (write-ahead log).

Если происходит сбой, данные на диске оказываются в рассогласованном состоянии: какие-то страницы были записаны раньше, какие-то — позже. Но остается и журнал, который можно прочитать и выполнить повторно те операции, которые уже были выполнены до сбоя, но результат которых не успел дойти до диска.
Читать дальше →

Индексы в PostgreSQL — 10

Время на прочтение11 мин
Количество просмотров31K

В прошлых статьях мы рассмотрели механизм индексирования PostgreSQL и интерфейс методов доступа, а также хеш-индексы, B-деревья, GiST, SP-GiST, GIN, RUM и BRIN. Нам осталось посмотреть на индексы Блума.

Bloom


Общая идея


Классический фильтр Блума — структура данных, позволяющая быстро проверить принадлежность элемента множеству. Фильтр очень компактен, но допускает ложные срабатывания: он имеет право ошибиться и счесть элемент принадлежащим множеству (false positive), но не имеет права сказать, что элемента нет в множестве, если на самом деле он там присутствует (false negative).

Фильтр представляет собой битовый массив (называемый также сигнатурой) длиной m бит, изначально заполненный нулями. Выбираются k различных хеш-функций, которые отображают любой элемент множества в k битов сигнатуры. Чтобы добавить элемент в множество, нужно установить в сигнатуре каждый из этих битов в единицу. Следовательно, если все соответствующие элементу биты установлены в единицу — элемент может присутствовать в множестве; если хотя бы один бит равен нулю — элемент точно отсутствует.

В случае индекса СУБД мы фактически имеем N отдельных фильтров, построенных для каждой индексной строки. Как правило, в индекс включаются несколько полей; значения этих полей и составляют множество элементов для каждой из строк.

Благодаря выбору размера сигнатуры m, можно находить компромисс между объемом индекса и вероятностью ложного срабатывания. Область применения Блум-индекса — большие, достаточно «широкие» таблицы, запросы к которым могут использовать фильтрацию по любым из полей. Этот метод доступа, как и BRIN, можно рассматривать как ускоритель последовательного сканирования: все найденные индексом совпадения необходимо перепроверять по таблице, но есть шанс вовсе не рассматривать значительную часть строк.
Читать дальше →

Индексы в PostgreSQL — 9

Время на прочтение18 мин
Количество просмотров40K

В прошлых статьях мы рассмотрели механизм индексирования PostgreSQL, интерфейс методов доступа и следующие методы: хеш-индексы, B-деревья, GiST, SP-GiST, GIN и RUM. Тема этой статьи — BRIN-индексы.

BRIN


Общая идея


В отличие от индексов, с которыми мы уже познакомились, идея BRIN не в том, чтобы быстро найти нужные строки, а в том, чтобы избежать просмотра заведомо ненужных. Это всегда неточный индекс: он вообще не содержит TID-ов табличных строк.

Упрощенно говоря, BRIN хорошо работает для тех столбцов, значения в которых коррелируют с их физическим расположением в таблице. Иными словами, если запрос без предложения ORDER BY выдает значения столбца практически в порядке возрастания или убывания (и при этом по столбцу нет индексов).

Метод доступа создавался в рамках европейского проекта по сверхбольшим аналитическим базам данных Axle с прицелом на таблицы размером в единицы и десятки терабайт. Важное свойство BRIN, позволяющее создавать индексы на таких таблицах — небольшой размер и минимальные накладные расходы на поддержание.

Работает это следующим образом. Таблица разбивается на зоны (range) размером в несколько страниц (или блоков, что то же самое) — отсюда и название: Block Range Index, BRIN. Для каждой зоны в индексе сохраняется сводная информация о данных в этой зоне. Как правило, это минимальное и максимальное значения, но бывает и иначе, как мы увидим дальше. Если при выполнении запроса, содержащего условие на столбец, искомые значения не попадают в диапазон, то всю зону можно смело пропускать; если же попадают — все строки во всех блоках зоны придется просмотреть и выбрать среди них подходящие.

Не будет ошибкой рассматривать BRIN не как индекс в обычном понимании, а как ускоритель последовательного сканирования таблицы. Можно посмотреть на него и как на альтернативу секционированию, если каждую зону считать отдельной «виртуальной» секцией.
Теперь рассмотрим устройство индекса более подробно.
Читать дальше →

Индексы в PostgreSQL — 8

Время на прочтение11 мин
Количество просмотров32K

Мы уже рассмотрели механизм индексирования PostgreSQL, интерфейс методов доступа и все основные методы доступа, как то: хеш-индексы, B-деревья, GiST, SP-GiST и GIN. А в этой части посмотрим на превращение джина в ром.

RUM


Хоть авторы и утверждают, что джин — могущественный дух, но тема напитков все-таки победила: GIN следующего поколения назвали RUM.

Этот метод доступа развивает идею, заложенную в GIN, и позволяет выполнять полнотекстовый поиск еще быстрее. Это единственный метод в этой серии статей, который не входит в стандартную поставку PostgreSQL и является сторонним расширением. Есть несколько вариантов его установки:

  • Взять пакет yum или apt из репозитория PGDG. Например, если вы ставили PostgreSQL из пакета postgresql-10, то поставьте еще postgresql-10-rum.
  • Самостоятельно собрать и установить из исходных кодов на github (инструкция там же).
  • Пользоваться в составе Postgres Pro Enterprise (или хотя бы читать оттуда документацию).

Ограничения GIN


Какие ограничения индекса GIN позволяет преодолеть RUM?

Во-первых, тип данных tsvector, помимо самих лексем, содержит информацию об их позициях внутри документа. В GIN-индексе, как мы видели в прошлый раз, эта информация не сохраняются. Из-за этого операции фразового поиска, появившиеся в версии 9.6, обслуживается GIN-индексом неэффективно и вынуждены обращаться к исходным данным для перепроверки.

Во-вторых, поисковые системы обычно возвращают результаты в порядке релевантности (что бы это ни означало). Для этого можно пользоваться функциями ранжирования ts_rank и ts_rank_cd, но их приходится вычислять для каждой строки результата, что, конечно, медленно.

Метод доступа RUM в первом приближении можно рассматривать как GIN, в который добавлена позиционная информация, и который поддерживает выдачу результата в нужном порядке (аналогично тому, как GiST умеет выдавать ближайших соседей). Пойдем по порядку.
Читать дальше →

Индексы в PostgreSQL — 7

Время на прочтение19 мин
Количество просмотров96K

Мы уже познакомились с механизмом индексирования PostgreSQL и с интерфейсом методов доступа, и рассмотрели хеш-индексы, B-деревья, индексы GiST и SP-GiST. А в этой части займемся индексом GIN.

GIN


— Джин?.. Джин — это, кажется, такой американский спиртной напиток?..
— Не напиток я, о пытливый отрок! — снова вспылил старичок, снова спохватился и снова взял себя в руки. — Не напиток я, а могущественный и неустрашимый дух, и нет в мире такого волшебства, которое было бы мне не по силам.

Лазарь Лагин, «Старик Хоттабыч».

Gin stands for Generalized Inverted Index and should be considered as a genie, not a drink.

README

Общая идея


GIN расшифровывается как Generalized Inverted Index — это так называемый обратный индекс. Он работает с типами данных, значения которых не являются атомарными, а состоят из элементов. При этом индексируются не сами значения, а отдельные элементы; каждый элемент ссылается на те значения, в которых он встречается.

Хорошая аналогия для этого метода — алфавитный указатель в конце книги, где для каждого термина приведен список страниц, где этот термин упоминается. Как и указатель в книге, индексный метод должен обеспечивать быстрый поиск проиндексированных элементов. Для этого они хранятся в виде уже знакомого нам B-дерева (для него используется другая, более простая, реализация, но в данном случае это несущественно). К каждому элементу привязан упорядоченный набор ссылок на строки таблицы, содержащие значения с этим элементом. Упорядоченность не принципиальна для выборки данных (порядок сортировки TID-ов не несет в себе особого смысла), но важна с точки зрения внутреннего устройства индекса.

Читать дальше →

Индексы в PostgreSQL — 6

Время на прочтение11 мин
Количество просмотров37K

Мы уже рассмотрели механизм индексирования PostgreSQL, интерфейс методов доступа и три метода: хеш-индекс, B-дерево и GiST. В этой части речь пойдет о SP-GiST.

SP-GiST


Вначале немного о названии. Слово «GiST» намекает на определенную схожесть с одноименным методом. Схожесть действительно есть: и тот, и другой — generalized search trees, обобщенные деревья поиска, предоставляющие каркас для построения разных методов доступа.

«SP» расшифровывается как space partitioning, разбиение пространства. В роли пространства часто выступает именно то, что мы и привыкли называть пространством — например, двумерная плоскость. Но, как мы увидим, имеется в виду любое пространство поиска, по сути произвольная область значений.

SP-GiST подходит для структур, в которых пространство рекурсивно разбивается на непересекающиеся области. В этот класс входят деревья квадрантов (quadtree), k-мерные деревья (k-D tree), префиксные деревья (trie).

Читать дальше →

Индексы в PostgreSQL — 5

Время на прочтение22 мин
Количество просмотров81K

В прошлые разы мы рассмотрели механизм индексирования PostgreSQL, интерфейс методов доступа, и два метода: хеш-индекс и B-дерево. В этой части займемся индексами GiST.

GiST


GiST — сокращение от «generalized search tree». Это сбалансированное дерево поиска, точно так же, как и рассмотренный ранее b-tree.

В чем же разница? Индекс b-tree жестко привязан к семантике сравнения: поддержка операторов «больше», «меньше», «равно» — это все, на что он способен (зато способен очень хорошо!). Но в современных базах хранятся и такие типы данных, для которых эти операторы просто не имеют смысла: геоданные, текстовые документы, картинки…

Тут на помощь и приходит индексный метод GiST. Он позволяет задать принцип распределения данных произвольного типа по сбалансированному дереву, и метод использования этого представления для доступа по некоторому оператору. Например, в GiST-индекс можно «уложить» R-дерево для пространственных данных с поддержкой операторов взаимного расположения (находится слева, справа; содержит и т. п.), или RD-дерево для множеств с поддержкой операторов пересечения или вхождения.

За счет расширяемости в PostgreSQL вполне можно создать совершенно новый метод доступа с нуля: для этого надо реализовать интерфейс с механизмом индексирования. Но это требует продумывания не только логики индексации, но и страничной структуры, эффективной реализации блокировок, поддержки журнала упреждающей записи — что подразумевает очень высокую квалификацию разработчика и большую трудоемкость. GiST упрощает задачу, беря на себя низкоуровневые проблемы и предоставляя свой собственный интерфейс: несколько функций, относящихся не к технической сфере, а к прикладной области. В этом смысле можно говорить о том, что GiST является каркасом для построения новых методов доступа.
Читать дальше →
1

Информация

В рейтинге
Не участвует
Откуда
Ярославль, Ярославская обл., Россия
Дата рождения
Зарегистрирован
Активность