Всем привет, с вами команда Layer!
Мы рады сообщить, что совсем скоро выйдет наша новая исследовательская работа, посвященная поиску моментов в видео, релевантных пользовательскому запросу. Мы хотим сделать эту работу как можно более доступной для каждого, кто хочет глубже разобраться в теме. Поэтому мы решили написать этот небольшой туториал, посвященный семейству моделей DETR, так как они используются не только для детекции котиков на картинках, но и в таких необычных доменах, как детекция моментов в видео. Мы уверены, что среди читателей многие знакомы с основами DETR, однако подозреваем, что не все могли следить за её развитием. Всё‑таки по сравнению с YOLO, DETRу пиара явно не достает. В этой статье мы предлагаем краткий обзор эволюции модели, чтобы помочь вам лучше ориентироваться в новых исследованиях. Если же вы впервые слышите о DETR или хотите освежить свои знания, то бегом читать — тык, если после прочтения остались вопросы, то можно ознакомиться с этими видео — тык, тык.
Давайте детальнее разберёмся, что ждёт вас в этом туториале. Сначала мы рассмотрим недостатки оригинальной версии DETR, а затем перейдём к архитектурным улучшениям, которые либо устранили эти проблемы, либо заметно их сгладили. Начнём с Deformable DETR — модели, которая оптимизировала вычисления. Затем обратим внимание на Conditional DETR и DAB DETR — архитектуры, которые существенно переосмыслили роль queries в модели. Далее мы погрузимся в особенности DN‑DETR, который стабилизирует one‑to‑one matching. После этого детально разберём DINO DETR — модель, которая объединяет и улучшает идеи DN‑DETR и DAB‑DETR, а также переизобретает RPN для детекционных трансформеров. И в завершение нашего путешествия мы познакомимся с CO‑DETR, который объединил классические детекторы, такие как ATSS, Faster RCNN, и модели типа DETR, установив новые SOTA метрики на COCO.