Pull to refresh
124
0
Андрей Черногоров @chernogorov_andrey

Сo-founder

Send message

Взгляд на ADAS изнутри: когда поедет робот?

Reading time16 min
Views15K
Сегодня мы хотим рассказать о направлении, с которого мы, Cognitive Pilot, исторически начали свои разработки в области создания беспилотных технологий, а именно отрасли automotive. Вообще эта сфера ставит перед разработчиками беспилотных систем наиболее интересные задачи: на дорогах общего пользования сцены намного сложнее и динамичнее, чем в сельском хозяйстве или на рельсах, а поведение объектов часто почти невозможно предугадать. Для создания беспилотных автомобилей используются технологии глубокого обучения, наиболее сложные нейронные сети и объемные датасеты. 

Но вместе с тем не секрет, что промышленное использование беспилотных автомобилей на дорогах общего пользования не разрешено законодателями. И получение санкций на это не стоит ожидать прямо завтра. Участникам рынка еще предстоит решить целый ряд серьезных организационных, юридических, технических и иных проблем. Поэтому мы и выбрали в качестве приоритетных, реальные рынки агро- и рельсового транспорта, на которых наш ИИ может работать и приносить пользу уже сегодня, где, например, комбайнеры уже не касаются руля, сосредоточившись на управлении техпроцессом уборки зерновых, машинисты локомотивов повышают безопасность работы, и где в рамках представленных нами моделей использования автопилотов не нужно ждать разрешения чиновников того или иного уровня. 


Total votes 53: ↑51 and ↓2+63
Comments44

Как мы первыми в мире роботизируем кормоуборочные комбайны

Reading time5 min
Views26K
Недавно мой коллега рассказал как мы роботизируем зерноуборочные комбайны и чему научились за этот сезон.

Начинается уборка кормовых культур и мы активно осваиваем кормоуборочную технику. 
Кормоуборочный комбайн – технически более сложная и мощная машина. В связке с ним идут сразу несколько транспортных средств для сбора урожая (трактора с прицепом, грузовики, силосовозы). К работе на такой технике допускаются только опытные механизаторы, у которых за спиной несколько лет работы.

Работа на комбайне во время уборки кормовой кукурузы похожа на езду в машине в густом тумане, только вместо тумана на протяжении всего пути высокая зеленая стена из растений, из которой может выскочить кабан, столб или человек. Перемолов человека (история есть в моей прошлой статье), комбайнеры седеют и больше не могут работать. Кроме этого, в этом «зеленом тумане» надо суметь не врезаться в рядом едущий силосовоз, следить за точностью загрузки силоса с хоботом длиной до 7 метров, из которого вылетает по 50-60 кг силоса в секунду, и равномерно заполнять фургон, чтобы он не гонял полупустым туда сюда.



Фактически один комбайнёр работает за троих, следит за процессом уборки кукурузы (одно рабочее место), ведёт технику (второе рабочее место), загружает силосовоз (третье рабочее место). В итоге что-то страдает. Если плохо вести, можно сломать дорогую технику (минимальная цена кормоуборочного комбайна 16 млн рублей, есть модели и по 50 миллионов), поэтому обычно ухудшается качество уборки и загрузки.

Большую часть работы мы автоматизируем, сейчас расскажу какие сложности мы преодолеваем и что делаем.
Total votes 140: ↑139 and ↓1+190
Comments124

Наша огромная гордость: мирные советские роботы-комбайны убрали первый урожай в южных регионах

Reading time10 min
Views78K
image
А ведь в прошлом году это делали senior-разработчики.

Возможно, вы помните, что мы говорили про то, как можно сильно улучшить работу обычного сельскохозяйственного комбайна, если использовать нейросетки для распознавания культур и препятствий и робота для автопилотирования. Всё это (кроме процессоров Nvidia и ещё части железа) — наша разработка. А радость в том, что в некоторых южных регионах страны закончилась уборочная страда, и наши комбайны показали себя лучше, чем ожидалось. Слава роботам!

image

В этом году мы поставили несколько сотен блоков из мощного графического ядра (для нейросетей), камер, гидравлических насосов или CAN-модулей для подруливания. Если в прошлом году агропилоты были в опытной эксплуатации, то сейчас речь идёт уже про серийные модели. И они справились.

Более того, они справились лучше, чем мы ждали. Кроме того, в релиз вошли далеко не все фичи. В релизе осталось, по сути, ядро, но одно только это позволило получить очень заметный экономический эффект.

Конечно, обошлось не без сюрпризов. Но давайте расскажу более конкретно, с числами и примерами.
Total votes 352: ↑349 and ↓3+444
Comments525

Как мы создаем Сognitive Agro Data Factory — самый большой нейронный университет в мире

Reading time10 min
Views10K
Я начну с революционного: когда мы внедряем Искусственные мозги C-Pilot в сельхозтехнику, мы немного уподобляемся Создателю. Мы Предмет превращаем в думающее и анализирующее Существо, то есть комбайн с Cognitive Agro Pilot начинает видеть и понимать, что происходит вокруг, а также принимать решения по дальнейшим действиям в рамках той производственной задачи, которая перед ним стоит. В каком-то смысле идет создание нового социального слоя тружеников села — слой агроботов с Искусственным Интеллектом C-Pilot, которые обдумывают и решают поставленные человеком агрозадачи.

По сути это зарождающийся слой существ, который надо массово и правильно учить. У человечества были тысячелетия на развитие эволюционного слоя сознания, у роботов это — месяцы. Но для этого надо создать необходимую среду, масштабную фабрику по обучению Искусственных мозгов и подготовки информации для них. В этой статье мы приоткроем тайны Cognitive Data Factory: комбайнa для сбора и переработки данных для агроотрасли.

То по каким учебникам и с какими учителями учатся Ваши дети имеет определяющее значение в их развитии и будущей карьере. Так и в автомотив отрасли — качественные данные и их правильная разметка имеют первостепенное значение для создателей ИИ для беспилотного транспорта и других высокоавтоматизированных систем управления. Cognitive Pilot учится через нашу уникальную Data Factory. Как это устроено внутри?


Total votes 57: ↑57 and ↓0+57
Comments20

О революции в радарах, дедлайнах и выходе в четвертое измерение

Reading time8 min
Views19K
В статьях моих коллег про беспилотные трамваи и тепловозы были упомянуты радары. Они широко применяются в автомобильной отрасли для реализации стандартных функций активной и пассивной безопасности. Решения для высокоавтоматизированных систем управления (включая беспилотный транспорт) требуют более гибких и продвинутых технологий. В Cognitive Pilot радарами занимается специальное подразделение, которое до конца 2019 года работало как Design House, выпуская по контрактной модели решения для автопроизводителей и поставщиков компонентов. Сейчас мы переходим на новую бизнес-модель и готовим к серийному производству линейку радаров для широкого круга заказчиков — от проектов DIY до стартапов и опытных парков. На базе использующихся в проектах Cognitive Pilot решений будут созданы готовые продукты для пользователей, которые можно условно разделить на 3 категории: «MiniRadar», «Industrial» и «Imaging 4D». Подобные устройства активно применяются в самых разных отраслях, поэтому стоит рассказать о них подробнее.


Читать дальше →
Total votes 59: ↑58 and ↓1+80
Comments67

Как мы написали крутейший в мире автопилот для маневрового тепловоза

Reading time8 min
Views34K
image
Один из ранних прототипов, использовавшихся для тестов.

Сразу скажу: крутейший он потому, что единственный из доведённых до опытной эксплуатации автопилотов третьего уровня. А единственный доведённый до опытной эксплуатации он потому, что без наработок по автопилотированию трамваев и чего-то ещё в этот рынок соваться просто нет смысла. Тепловозов довольно много, задача интересная и важная для производств, но не окупается как отдельная. Мы знаем про наработки на эту тему у НИИАС и Siemens, но не знаем, чтобы их трамваи где-то ездили в городской среде, а локомотивы перевозили реальные грузы.

Поскольку у нас уже достаточно много различных наработок и решений с беспилотными трамваями в России и Китае, мы решили провести эксперименты с одним крупным предприятием с большим парком маневровых тепловозов, используемых для доставки сырья к цехам.

Там проблема в том, что движение тепловоза регламентируется множеством сигналов, положениями людей и объектов инфраструктуры, а также командами диспетчера. Машинист должен оставаться предельно внимательным всю смену (примерно 12 часов), в том числе и ночью. В результате он рано или поздно либо пропускает что-то и попадает в аварию, либо кого-то сбивает. Это жизнь, травмы на транспорте случаются, но конкретно в этих ситуациях можно позволить себе ставить на тепловозы радары, потому что встаёт не просто один тепловоз, а целое крупное предприятие. Надолго. Предотвращение столкновений и автопилот могут сильно снизить нагрузку на человека в кабине, и тогда производства не будут вставать.

Модуль на картинке — один из ранних прототипов блока камер, с которого мы начинали. С этого момента он претерпел значительные изменения, но всегда интересно посмотреть, с чего всё начиналось. Сейчас расскажу, как вообще роботы способны ориентироваться на станциях, потому что задача вообще-то нетривиальная.
Total votes 117: ↑115 and ↓2+154
Comments114

Как наш беспилотный трамвай видит реальный город

Reading time8 min
Views28K
Привет, Хабр!

В общем, есть экспериментальный трамвай, который в рамках испытаний иногда ходил по одному из маршрутов. Автопилот тестируется на закрытой территории, а в городских — активный помощник водителя вагоновожатого. Водитель трамвая едет с руками на управлении, но тестируется именно автономный автопилот. Трамвай визуально не отличается от обычного, потому что мы вместе с производителем запихали приборные блоки далеко под панели и вывели интерфейсы на стандартные экраны. Единственное — у него можно заметить несколько камер под лобовым стеклом, спрятанный под обшивку радар и GPS-датчик на крыше. Да, ещё иногда для целей отладки мы привешиваем лидар.

image

За время испытаний мы узнали, что правила дорожного движения и реальная обстановка на дорогах даже для трамвая — это очень разные вещи.

Вообще трамвай — это идеальная «песочница» для полного автопилота автомобиля. Мы уже сейчас его реализовали. Наши читы:

  • Мы знаем маршрут и имеем гарантию, что наше ТС никуда с него не денется.
  • Можно проехать заранее и разметить точки со светофорами и прочим, чтобы системе было легче их распознавать.
  • Трамвай не может перестроиться из полосы в полосу. Большая часть нагрузки автопилота авто завязана на «куда сейчас отрулить» и тысячи сценариев, а у нас отрулить некуда.
  • Тормозит он почти мгновенно и немного резко, то есть прогнозы движения других автосредств на дороге менее сложные.

С чем реально есть проблемы — это с людьми на остановках, которые стараются пролезть первыми, рискуя жизнью.
Total votes 112: ↑109 and ↓3+137
Comments238

Information

Rating
Does not participate
Registered
Activity