Одно из направлений работы нашей команды компьютерного зрения Vision RnD в SberDevices — распознавание жестового языка. Об этой задаче и о том, как мы ее решаем, мы уже писали на Хабре тут и тут (а еще тут и тут). Некоторое время назад перед нами встал вопрос выбора архитектуры нейросети для быстрой и качественной обработки изображений (видео‑энкодера). Хотя сама задача распознавания жестового языка предполагает обработку видео, в качестве первого этапа нужна нейросеть, обрабатывающая изображения на отдельных кадрах. Причем делающая это достаточно быстро, чтобы обеспечить работу всей конструкции в реальном времени. Безусловно, за последний десяток лет человечеству стало известно немало архитектур нейросетей для обработки изображений. Однако, сопоставить их по критерию цена‑качество точность‑производительность и выбрать лидера не так просто. Мы решили собрать несколько популярных решений‑претендентов на звание чемпиона и провести состязание в славном городе Гамбурге тестирование в идентичных условиях. Результатами этого исследования делимся под катом.
Программист-аналитик в области CV
Система распознавания шрифта Брайля. Читаем написанное белым по белому
В 2018 году мы взяли из детдома в семью слепую девочку Анжелу. Тогда я думал, что это чисто семейное обстоятельство, никак не связанное с моей профессией разработчика систем компьютерного зрения. Но благодаря дочери через два года появилась программа и интернет-сервис для распознавания текстов, написанных шрифтом Брайля - Angelina Braille Reader.
Сейчас этот сервис используют сотни людей и в России, и за ее пределами. Тема оказалась хайповой, сюжет о программе даже показали в федеральных новостях на ТВ. Но что важнее - за свою многолетнюю карьеру в ИТ ни в одном проекте я не получал столько искренних благодарностей от пользователей.
Ниже расскажу о том, как делалась эта разработка и с какими трудностями пришлось столкнуться. Более развернутое описание приведено в публикациях [1,2].
Возможно, кто-то захочет внести в проект свой вклад.
Как подружить PyTorch и C++. Используем TorchScript
Около года назад разработчики PyTorch представили сообществу TorchScript — инструмент, который позволяет с помощью пары строк кода и нескольких щелчков мыши сделать из пайплайна на питоне отчуждаемое решение, которое можно встроить в систему на C++. Ниже я делюсь опытом его использования и постараюсь описать встречающиеся на этом пути подводные камни. Особенное внимание уделю реализации проекта на Windows, поскольку, хотя исследования в ML обычно делаются на Ubuntu, конечное решение часто (внезапно!) требуется под "окошками".
Примеры кода для экспорта модели и проекта на C++, использующего модель, можно найти в репозиториии на GitHub.
Information
- Rating
- Does not participate
- Location
- Зеленоград, Москва и Московская обл., Россия
- Works in
- Registered
- Activity