Если по-честному, то ваши переводы действительно требуют серьёзной доработки.
Вот наугад взял:
половина огромного ромбокубоктаэдра
Что-такое огромный ромбокубоктаэдр? В оригинале great rhombcuboctahedron. Слова great и small рядом с телами обычно переводят как большой и малый. Дальше, почему половина тела? На что это должно быть похоже? Снова в оригинале было half the vertices of. То есть особым образом выбранная половина вершин. И т. п.
На самом деле ваши статьи гораздо бы улучшились и их бы стало приятнее читать, если бы их кто-нибудь, кто хорошо разбирается в теме, вычитал бы перед публикацией.
Возведение числа в квадрат, которое больше или меньше единицы, даст большее или меньшее число соответственно.
-3 < 1, но (-3)^2 > 1.
Для правильного тетраэдра с объёмом в sqrt(2)/12= 0.117851 потребуется четыре точки.
Перевод совсем не ОК, лучше «для четырёх точек решением будет правильный тетраэдр». Так как мы фиксируем точки и ищем решение, а не наоборот.
Для правильной пирамиды с единичным перпендикуляром потребуется 5 точек, а её объём равен sqrt(3)/12 = 0.1443375; это решение было получено в 1976-ом году [1].
Тут перевод даже не близок к оригиналу, там:
Five points need a unit equilateral triangle with a perpendicular unit line, with volume Square root of 3/12 = 0.1443375; solved in 1976 [1].
Где вы увидели пирамиду? Тут рассказано про конструкцию по ссылке [1], где берутся два «перпендикулярных» симлекса на трёх и на двух вершинах с единичными сторонами и рассматривается их выпуклая оболочка.
Вот наугад взял:
Что-такое огромный ромбокубоктаэдр? В оригинале great rhombcuboctahedron. Слова great и small рядом с телами обычно переводят как большой и малый. Дальше, почему половина тела? На что это должно быть похоже? Снова в оригинале было half the vertices of. То есть особым образом выбранная половина вершин. И т. п.
На самом деле ваши статьи гораздо бы улучшились и их бы стало приятнее читать, если бы их кто-нибудь, кто хорошо разбирается в теме, вычитал бы перед публикацией.
-3 < 1, но (-3)^2 > 1.
Перевод совсем не ОК, лучше «для четырёх точек решением будет правильный тетраэдр». Так как мы фиксируем точки и ищем решение, а не наоборот.
Тут перевод даже не близок к оригиналу, там:
Где вы увидели пирамиду? Тут рассказано про конструкцию по ссылке [1], где берутся два «перпендикулярных» симлекса на трёх и на двух вершинах с единичными сторонами и рассматривается их выпуклая оболочка.