Получая много вопросов в прошлом, я решил расставить все точки над “и”.

Пользователь
Свёрточные нейронные сети (СНС). Звучит как странное сочетание биологии и математики с примесью информатики, но как бы оно не звучало, эти сети — одни из самых влиятельных инноваций в области компьютерного зрения. Впервые нейронные сети привлекли всеобщее внимание в 2012 году, когда Алекс Крижевски благодаря им выиграл конкурс ImageNet (грубо говоря, это ежегодная олимпиада по машинному зрению), снизив рекорд ошибок классификации с 26% до 15%, что тогда стало прорывом. Сегодня глубинное обучения лежит в основе услуг многих компаний: Facebook использует нейронные сети для алгоритмов автоматического проставления тегов, Google — для поиска среди фотографий пользователя, Amazon — для генерации рекомендаций товаров, Pinterest — для персонализации домашней страницы пользователя, а Instagram — для поисковой инфраструктуры.
Но классический, и, возможно, самый популярный вариант использования сетей это обработка изображений. Давайте посмотрим, как СНС используются для классификации изображений.
Задача классификации изображений — это приём начального изображения и вывод его класса (кошка, собака и т.д.) или группы вероятных классов, которая лучше всего характеризует изображение. Для людей это один из первых навыков, который они начинают осваивать с рождения.
«Лучшие программисты не чуть-чуть лучше хороших. Они на порядок лучше по любым меркам: концептуальное мышление, скорость, изобразительность и способность находить решения. »– Rendall E.Stross
Это небольшой рассказ о практических вопросах использования машинного обучения для масштабных статистических исследований различных данных в Интернет. Также будет затронута тема применения базовых методов математической статистики для анализа данных.
"О" большое — это отличный инструмент. Он позволяет быстро выбрать подходящую структуру данных или алгоритм. Но иногда простой анализ "О" большого может обмануть нас, если не подумать хорошенько о влиянии константных множителей. Пример, который часто встречается при программировании на современных процессорах, связан с выбором структуры данных: массив, список или дерево.
В начале 1980-х время, необходимое для получения данных из ОЗУ и время, необходимое для произведения вычислений с этими данными, были примерно одинаковым. Можно было использовать алгоритм, который случайно двигался по динамической памяти, собирая и обрабатывая данные. С тех пор процессоры стали производить вычисления в разы быстрее, от 100 до 1000 раз, чем получать данные из ОЗУ. Это значит, что пока процессор ждет данных из памяти, он простаивает сотни циклов, ничего не делая. Конечно, это было бы совсем глупо, поэтому современные процессоры содержат несколько уровней встроенного кэша. Каждый раз когда вы запрашиваете один фрагмент данных из памяти, дополнительные прилегающие фрагменты памяти будут записаны в кэш процессора. В итоге, при последовательном проходе по памяти можно получать к ней доступ почти настолько же быстро, насколько процессор может обрабатывать информацию, потому что куски памяти будут постоянно записываться в кэш L1. Если же двигаться по случайным адресам памяти, то зачастую кэш использовать не получится, и производительность может сильно пострадать. Если хотите узнать больше, то доклад Майка Актона на CppCon — это отличная отправная точка (и отлично проведенное время).
dependencies {
compile 'com.android.support:percent:23.4.0'
}
У меня есть многолетний опыт внедрения и последующего сопровождения информационных систем на различных предприятиях. Опыт, в большинстве случаев, был успешным – но здесь я хочу побеседовать, в первую очередь, о причинах, ведущих к неудаче в этом деле, предостеречь вас от возможных ошибок. Я означу собственный метод внедрения, который я использовал неоднократно и который помогает избежать большинства из них.