Pull to refresh
352
175.2
Александр Семенов @shiru8bit

Узкий специалист широкого профиля

Send message

Ричард Хэмминг. «Несуществующая глава»: Как мы знаем, что мы знаем (1-10 минута из 40 )

Reading time7 min
Views8.9K

Этой лекции не было в расписании, но ее пришлось добавить, чтобы не возникало окна между занятиями. Лекция, в сущности, посвящена тому, как мы знаем то, что мы знаем, если, конечно, мы и в самом деле это знаем. Эта тема стара как мир – она обсуждается последние 4000 лет, если не дольше. В философии для ее обозначения создан специальный термин – эпистемология, или наука о знании.

Я бы хотел начать с первобытных племен далекого прошлого. Стоит отметить, что в каждом из них существовали миф о сотворении мира. По одному древнеяпонскому поверью, некто взболтал грязь, из брызг которой появились острова. Подобные мифы были и у других народов: например, израильтяне верили, что Бог шесть дней творил мир, после чего устал и закончил творение. Все эти мифы схожи – хотя сюжеты их довольно разнообразны, все они пытаются объяснить, почему существует этот мир. Я буду называть такой подход теологическим, поскольку он не предполагает объяснений, кроме как «это произошло по воле богов; они сделали то, что посчитали нужным, и так появился мир».

В районе VI века до н. э. философы античной Греции начали задавать более конкретные вопросы – из чего состоит этот мир, каковы его части, а также попытались подойти к ним скорее рационально, нежели теологически. Как известно, они выделяли стихии: землю, огонь, воду и воздух; у них было еще множество других понятий и убеждений, и медленно, но верно все это преобразовалось в наши современные представления о том, что мы знаем. Тем не менее, тема эта озадачивала людей во все времена, и даже древние греки задавались вопросом, как они знали то, что они знали.

Нейровоспаление

Reading time18 min
Views31K
Исследователи склонны всё больше и больше внимания обращать на воспалительные процессы в мозгу при дегенеративных заболеваниях, как в роли первопричины, так и в роли вторичного фактора, вызванного повреждением нервной ткани. Нейровоспаление может оказаться центральным процессов в старении организма.

Определить нейровоспаление в контексте нейродегенеративных заболеваний очень сложно, хотя, например, при рассеянном склерозе (аутоиммунное заболевание, не имеет ничего общего со склерозом в бытовом понимании) это не представляет затруднений. В последнем случае лимфоциты и моноциты в избытке проникают за барьер отделяющий нервную ткань от кровяного русла, вызывая нарушение функции.

С патологиями, включающими в себя болезнь Альцгеймера, которую вы вероятно знаете по состоянию писателя Терри Пратчетта перед его смертью, болезнь Паркинсона, от которой в последние годы своей жизни страдал художник Сальвадор Дали, боковой амиотрофический склероз, который стал известен в связи с состоянием физика Стивена Хокинга, описание ведётся по реакции, выраженной в изменении формы и структуры глиальных клеток – астроцитов и микроглии. Многие из подобных заболеваний проявляются в старшем возрасте, они связаны со старением и возможно вызваны им. Понимание нейровоспаления, его причин и последствий, может потенциально улучшить терапию многих заболеваний, некоторые из которых сейчас лечатся только симптоматически.

Для того, чтобы разобраться в феномене нейровоспаления, сперва необходимо понять, что такое воспаление. Предложенному вопросу уже более 2000 лет, но определения воспаления, которое привело бы учёных и врачей всего мира к консенсусу, не предложено до сих пор.

Что такое воспаление?


Читать дальше →

Запланированы первые испытания на мышах аллотопической экспрессии

Reading time8 min
Views8.4K


Митохондрии – «энергетические станции» клетки, потомки древних симбиотических бактерий. Они сохранили небольшой фрагмент бактериального генома, кодирующего тринадцать генов, нужных для функционирования митохондрий. Большинство иных генов перешли в ядро клетки в процессе эволюции, так как митохондрии становились всё более интегрированными в клетку. К сожалению, митохондриальная ДНК более подвержена повреждениям, чем ядерная, и некоторые формы повреждений могут приводить к мутациям и сбоям в работе митохондрий. Мутантные митохондрии быстро захватывают клетку, вытесняя их функциональные версии в процессе клональной экспансии. Затем эта клетка становится экспортером свободных радикалов, что приводит к целому ряду возрастных патологий. Перекисные липиды, например, являются причиной атеросклероза.

Что такое психическое здоровье: взгляд со стороны психологии / психотерапии

Reading time28 min
Views53K
Привет, читатель!

Прошлая моя статья вышла несколько “суховатой”, в чем меня справедливо упрекнули на нескольких площадках, поэтому я решил написать другую, более наполненную живыми примерами и понятными объяснениями. Поговорить сегодня я предлагаю о психическом здоровье в целом — что это такое, в чем проявляется, где грань между ним и… не совсем здоровыми состояниями и т.п.

ПРЕДСТАВЬТЕ, ЧТО ТУТ — КАРТИНКА ДЛЯ ПРИВЛЕЧЕНИЯ ВНИМАНИЯ


tl:dr: В статье рассматривается вопрос психического здоровья на примере модели, предложенной Нэнси Мак-Вильямс (“16 элементов психического здоровья”). По каждому элементу я постараюсь дать примеры — как выглядит “сломанная” в этом аспекте психика, что было сделано, чтобы её “починить” (в данном конкретном случае), какие ошибки были допущены, что ещё можно было бы сделать и т.д.

К сожалению, стремление к упрощению материала с моей стороны значительно снизило точность и объективность формулировок, предупреждаю сразу.
Читать дальше →

Как работает, и работает ли вообще разговорная психотерапия

Reading time30 min
Views69K
Привет, Хабр!

Прошлые мои статьи были посвящены, в основном, вопросам фармакологии, но это не совсем моя тема, я всё-таки клинический психолог (с недавних пор), поэтому сегодня мы поговорим о разговорной терапии во всех её проявлениях.



tl;dr: в длинной и нудной статье рассматривается вопрос эффективности психотерапии (да, эффективна, в своих границах применимости, разумеется), а также приводятся размышления относительно того, каким образом эта эффективность достигается (посредством реализации морфологических и метаболических изменений за счёт нейропластичности мозга).

В конце бонус для любителей видеоформата (если таковые найдутся): запись презентации на тему этой статьи: если лениво читать, можно посмотреть.

ДНК. Механизмы хранения и обработки информации. Часть I

Reading time6 min
Views39K

Много людей использует термин ДНК. Но статей, нормально описывающих, как она работает почти нет (понятных не биологам). Я уже описывал в общих чертах устройство клетки и самые основы ее энергетических процессов. Теперь перейдем к ДНК.
ДНК хранит информацию. Это знают все. Но вот как она это делает?

Начнем с того, где она в клетке хранится. Примерно 98% хранится в ядре. Остальное в митохондриях и хлоропластах (в этих ребятах протекает фотосинтез). ДНК — это огромный полимер, состоящий из мономерных звеньев. Выглядит примерно так.



Что мы тут видим? Во-первых ДНК — двухцепочечная молекула. Почему это так важно — чуть позже. Далее мы видим синие пятиугольники. Это молекулы дезоксирибозы (такой сахар, чуть меньше глюкозы. От рибозы отличается отсутствием одной OH группы, что придает стабильности молекуле ДНК, в отличие от РНК, в которой используется рибоза. Дальше, для простоты опущу приставку дезокси и буду просто говорить рибоза, да простят нас щепетильные товарищи). Маленькие кружкИ — остатки фосфорной кислоты. Ну и собственно есть азотистые основания. Всего их 5, но в ДНК в основном встречаются 4. Это Аденин, Гуанин, Тимин и Цитозин. То есть, есть рибоза с которой связано азотистое основание. Вместе они образуют так называемые нуклеозиды, которые связываются друг с другом с помощью остатков фосфорной кислоты. Таким образом мы получаем длинную цепь, состоящую из мономеров. Теперь посмотрите на увеличенную левую цепь. Видите C и G соединены тремя пунктирными линиями, а T и A двумя. Что это значит? Да, ДНК состоит из двух цепей, но что удерживает их вместе? Есть такая штука, как водородная связь. Выглядит примерно так. На атомы кислорода (O) и азота (N) формируется частичный отрицательный заряд, а на водороде (H) — положительный. Это приводит к формированию слабых связей.
Читать дальше →

Радикальное продление жизни: вещества против старения

Reading time8 min
Views71K

Картина Евгении Кашиной «Эликсир бессмертия»

Что нужно делать, чтобы увеличить свои шансы на долгую и здоровую жизнь? Поддерживайте физическую активность, ешьте больше овощей и фруктов, хорошо спите, гуляйте на свежем воздухе, избегайте стрессов, регулярно проходите медицинское обследование — этим рекомендациям уже больше ста лет. На самом деле все бесполезно — вы все равно умрете.

Но есть и хорошие новости: в эпоху нейросетей, генной терапии и машинного обучения стало возможным изучить процесс старения клеток, тканей и органов. Уже сейчас мы знаем некоторые методы замедления скорости старения, а через 10–20 лет, возможно, научимся обращать эти процессы вспять. В любом случае, лучше прямо сейчас задаться целью прожить здоровым дольше, чтобы своими глазами увидеть, сможет ли наука окончательно решить вопрос патологии старения.
Читать дальше →

Китайская панель биомаркеров старения

Reading time12 min
Views9K
Молекулярные и фенотипические биомаркеры старения.

Введение.

Для чего нужны биомаркеры старения?

Старение представляет из себя зависящий от времени физиологический функциональный спад, который поражает большинство живых организмов. И этот процесс напрямую связан с молекулярными изменениями. Он также является самым основным фактором риска для многих неинфекционных заболеваний. С одной стороны, выявление биомаркеров старения будет способствовать дифференциации людей, имеющих один и тот же хронологический возраст, но разные варианты старения. Количественные биомаркеры старения также могут составить группу измерений для «здорового старения» и, кроме этого, прогнозировать продолжительность жизни.

С другой стороны, биомаркеры старения могут также помочь исследователям сузить сферу исследований до конкретных биологических аспектов в попытках объяснить биологические процессы, связанные со старением и возрастными заболеваниями. Здесь мы рассмотрим фенотипические и молекулярные биомаркеры старения.

Фенотипические биомаркеры могут быть неинвазивными, панорамными и легкодоступными, тогда как молекулярные биомаркеры могут отражать некоторые молекулярные механизмы, лежащие в основе возрастного статуса. Этот обзор в основном рассматривает результаты, полученные в исследованиях с людьми (и в некоторых редких случаях – с лабораторными животными (мышами) и нематодами).

Молекулярные биомаркеры старения

Читать дальше →

Цукерберг финансирует: Как «подружить» оптические технологии и биомедицину

Reading time7 min
Views2.3K
Чтобы ускорить биомедтех, создатель Fаcebook решил профинансировать Imaging Scientists (ученые, занимающиеся наукой о сборе, хранении, поиске и обработке визуальной информации).

image

Конфокальная микроскопия фибробластов, которые важны в соединительной ткани. Ядра отмечены синим, актинические волокна красным, а тубулины зеленым. Фото: iStock.com.

Изобретение микроскопа в конце XVI века позволило ученым впервые исследовать микроскопический мир, но ученым потребовалось еще 200 лет, чтобы оценить микроскоп как важный инструмент в клинической медицине. Сегодня изображения молекул, клеток и тканей являются критическим шагом в биомедицинских исследованиях и клинической практике. Однако недостатки в программном обеспечении обработки изображений и в распространении новых технологий микроскопа замедлили прогресс в этой области.

Chan Zuckerberg Initiative (CZI) в прошлом году провели три семинара по теме обработки изображений, которые были направлены на вычислительные инструменты для микроскопии, клеточную и субклеточную визуализацию и визуализацию в мезомасштабе и макромасштабе, соответственно. Мы также посетили семь различных центров обработки изображений в США и Европе. В полученных нами отзывах мы увидели возможность ускорения прогресса в области обработки изображений за счет использования технологической экспертизы, которая стала основой нашего запроса на предоставление информационных систем для ученых, занимающихся наукой о сборе, хранении, поиске и обработке визуальной информации (RFA)
Читать дальше →

Энергия в клетке. Использование и хранение

Reading time5 min
Views55K

Всем привет! Эту статью я хотел посвятить клеточному ядру и ДНК. Но перед этим нужно затронуть то, как клетка хранит и использует энергию (спасибо spidgorny). Мы будем касаться вопросов связанных с энергией почти везде. Давайте заранее в них разберемся.  

Из чего можно получать энергию? Да из всего! Растения используют световую энергию. Некоторые бактерии тоже. То есть органические вещества синтезируются из неорганических за счет световой энергии. + Есть хемотрофы. Они синтезируют органические вещества из неорганических за счет энергии окисления аммиака, сероводорода и др. веществ. А есть мы с вами. Мы — гетеротрофы. Кто это такие? Это те, кто не умеет синтезировать органические вещества из неорганических. То есть хемосинтез и фотосинтез, это не для нас. Мы берем готовую органику (съедаем). Разбираем ее на кусочки и либо используем, как строительный материал, либо разрушаем для получения энергии.
Что конкретно мы можем разбирать на энергию? Белки (сначала разбирая их на аминокислоты), жиры, углеводы и этиловый спирт (но это по желанию). То есть все эти вещества могут быть использованы, как источники энергии. Но для ее хранения мы используем жиры и углеводы. Обожаю углеводы! В нашем теле основным запасающим углеводом является гликоген.


Он состоит из остатков глюкозы. То есть это длинная, разветвленная цепочка, состоящая из одинаковых звеньев (глюкозы). При необходимости в энергии мы отщепляем по одному кусочку с конца цепи и окисляя его получаем энергию. Такой способ получения энергии характерен для всех клеток тела, но особенно много гликогена в клетках печени и мышечной ткани.
Читать дальше →

Краткое введение в Клеточную биологию

Reading time4 min
Views18K


Последние пару лет я занимаюсь исследованиями в области биологии растительной клетки, в частности, я занимаюсь вопросом сигналинга и регуляции клеточных процессов. В свободное время балуюсь биоинформатикой, классическими ML задачами, и спортивной биомеханикой. Этой весной я, по счастливой случайности выплыл в реальный мир и пообщался с реальными людьми, что позволило мне понять, как мало обычный человек знает о том, как устроен его организм и мир вокруг. Это и натолкнуло меня на мысль написать цикл статей о том как устроен наш организм, как работают клетки и как наконец хранится информация в ДНК (подробные описания встречаются, увы, крайне редко, а ведь для понимания работы ДНК не хватает знания о 4 нуклеотидах). Но начну я пожалуй с самого простого, с состава клеток (для начала в очень упрощенной форме).

Ни для кого не секрет, что почти все живое в этом мире состоит из клеток, будь то мы с вами, любимый кот, водоросли, или бактерии помогающие переваривать все то, чем современный человек загружает свой желудок. Однако большинство людей почти ничего не знает о том, как устроены клетки и как они работают. Многие из вас могут возразить, что их работа не связанна с биологией и эти знания им не нужны, и это ваше право. Однако в большинстве насущных проблем биологическое знание может нам помочь (например понять абсурдность рекламы большинства омолаживающих кремов, важности антибиотиков и их правильного приема, всю абсурдность споров на тему ГМО и т.д.).
Читать дальше →

Создаём простую нейросеть

Reading time9 min
Views208K


Перевод Making a Simple Neural Network

Что мы будем делать? Мы попробуем создать простую и совсем маленькую нейронную сеть, которую мы объясним и научим что-нибудь различать. При этом не будем вдаваться в историю и математические дебри (такую информацию найти очень легко) — вместо этого постараемся объяснить задачу (не факт, что удастся) вам и самим себе рисунками и кодом.
Начнем.
2

Information

Rating
17-th
Location
Москва, Москва и Московская обл., Россия
Works in
Date of birth
Registered
Activity

Specialization

Game Developer, Application Developer
Senior
From 9,000 $
English
C++
C
Programming microcontrollers
Code Optimization
Software development
System Programming
Assembler