Такие важные короткоживущие данные

Поговорим о вре́менных данных, служащих для информационного обмена между отдельными вычислителями в (максимально близкорасположенных) параллельных вычислительных системах.

Распараллеливаем вычисления

Поговорим о вре́менных данных, служащих для информационного обмена между отдельными вычислителями в (максимально близкорасположенных) параллельных вычислительных системах.

Параллелизации обработки данных в настоящее время применяется в основном для сокращения времени вычислений путем одновременной обработки данных по частям на множестве различных вычислительных устройств с последующим объединением полученных результатов. Параллельное выполнение позволяет “обойти” сформулированный лордом Рэлеем в 1871 г. фундаментальный закон, согласно которому (в применимости к тепловыделению процессоров) мощность их тепловыделения пропорциональна четвертой степени тактовой частоты процессора (увеличение частоты вдвое повышает тепловыделение в 16 раз) и фактически заменить его линейным от числа параллельных вычислителей – при сохранении тактовой частоты). Ничто не дается даром – задача выявления (обычно скрытого для непосвящённого наблюдателя, [1]) потенциала параллелизма в алгоритмах не является "лежащей на поверхности", а уж эффективность его (параллелизма) использования – тем более.

Задача:
Нужно пройтись по 650 000 000 пользователям ВК и вытащить только тех, кто живет в Москве. Затем отдельно обработать уже полученные айдишники.
Решение:
- генерация токенов для вк api
- асинхронные запросы
- код проекта в Google Colab (Python)

https://www.youtube.com/playlist?list=PLwr8DnSlIMg0KABru36pg4CvbfkhBofAi
Как-то на Хабре мне попалась довольно любопытная статья “Научно-технические мифы, часть 1. Почему летают самолёты?”. Статья довольно подробно описывает, какие проблемы возникают при попытке объяснить подъёмную силу крыльев через закон Бернулли или модель подъёмной силы Ньютона (Newtonian lift). И хотя статья предлагает другие объяснения, мне бы всё же хотелось остановиться на модели Ньютона подробнее. Да, модель Ньютона не полна и имеет допущения, но она даёт более точное и интуитивное описание явлений, чем закон Бернулли.
Основной недостаток этой модели — это отсутствие взаимодействия частиц газа друг с другом. Из-за этого при нормальных условиях она даёт некорректные результаты, хотя всё ещё может применяться для экстремальных условий, где взаимодействием можно пренебречь.
Я же решил проверить, что же произойдёт в модели Ньютона если её улучшить. Что если добавить в неё недостающий элемент межатомного взаимодействия? Исходный код и бинарники получившегося симулятора доступны на GitHub.
Перед тем как мы начнём, я бы хотел сразу обозначить, что это статься не о физике самой модели. Эта статья о GPGPU-программировании. Мы не будем рассматривать физические свойства самой модели, потому что она груба и не подходит для настоящих расчётов. И всё же, эта неточная модель даёт куда более интуитивное описание явления подъёмной силы, чем закон Бернулли.




