Обновить
6.6

TensorFlow *

открытая библиотека для машинного обучения

Сначала показывать
Порог рейтинга
Уровень сложности

Интеграция TFLite во Flutter: внедряем модели машинного обучения в мобильное приложение

Уровень сложностиСредний
Время на прочтение6 мин
Охват и читатели2.7K

Привет! Меня зовут Никита Грибков, я Flutter-разработчик в AGIMA. В этой статье расскажу про фреймворк TensorFlow Lite, который позволяет интегрировать в мобильное приложение модели машинного обучения. Это полезная штука, если нужно реализовать фичи, связанные с распознаванием речи или с классификацией изображений. Покажу, как обучать модели и как затем с ними работать.

Читать далее

Wolfram Natural Language Understanding или спасение для студентов

Уровень сложностиСредний
Время на прочтение12 мин
Охват и читатели4.1K

Wolfram — крутая штука. Сколько школьников получило из-за него пятерку, а сколько студентов зачет, не сосчитать...

Устроено все просто: плохой ученик загружает задачку и получает приятный результат с хорошей оценкой. Все задачи считаются алгоритмически.

Хоть скопируй лабораторную по физике...

Поэтому главной загадкой этого сервиса становится перевод неподготовленной информации студента в удобоваримый для алгоритмов вариант данных.

Языковая модель (NLU) — разгадка.

Читать далее

Введение в AI Selfie Background Remover с использованием TensorFlow.js для React-приложений

Уровень сложностиСредний
Время на прочтение4 мин
Охват и читатели1.7K

Я создал "React Selfie AI Background Remover" — компонент React, который использует TensorFlow.js для удаления фона с изображений людей прямо в браузере.

✨ Основные особенности:

🤖 Использует MediaPipe Selfie Segmentation для точной сегментации объектов.

⚙️ Легко интегрируется в любое React-приложение.

🖼️ Доступно live demo для тестирования.

Вы можете найти компонент здесь:

📦 NPM

💻 GitHub

Читать далее

Краткий гайд по квантованию нейросетей

Уровень сложностиСредний
Время на прочтение9 мин
Охват и читатели4.9K

Мы достаточно написали статей про оптимизацию ваших нейросетей, сегодня пора перейти к дроблению, уменьшению и прямому урезанию, иначе квантованию данных.

Сам по себе процесс этот несложный с точки зрения всего, но подводные камни у операции есть.

Рассказываем о видах квантования и приводим примеры в этой статье

Читать далее

«А можно быстрее?»: практические советы по ускорению обучения нейросетей

Уровень сложностиСредний
Время на прочтение12 мин
Охват и читатели3.7K

Мы продолжаем изучать, как ускоряют обучение нейросетей. В прошлой статье мы погрузились в теоретические аспекты этой проблемы. Сегодня перейдем к практике. 

Мы разберем несколько интересных исследований, которые демонстрируют эффективность различных подходов к ускорению нейросетей на разнообразных задачах и датасетах. Затем обсудим практические рекомендации по выбору и комбинированию методов оптимизации и расскажем, какие инструменты лучше использовать для профилирования и мониторинга процесса обучения. В довершение рассмотрим полезные библиотеки для быстрой и эффективной разработки.

Читать далее

«А можно быстрее?»: разбираем методы ускорения обучения нейронных сетей

Уровень сложностиСредний
Время на прочтение21 мин
Охват и читатели5K

Современные нейросетевые архитектуры достигают впечатляющих результатов в сложных задачах ИИ благодаря росту объемов данных и вычислительных мощностей. Однако обратной стороной медали стала высокая ресурсоемкость обучения.

Например, последняя версия GPT-4 от OpenAI обучалась на большом GPU-кластере. По некоторым данным, она содержит около 1,8 триллиона параметров, а ее обучение обошлось более чем в 100 млн долларов. А модель Llama 3.1 405B, вроде бы оптимизированная под ограниченные ресурсы, все равно требовала более 15 триллионов токенов и свыше 16 тысяч GPU NVIDIA H100.

И хотя нынешнее качество работы LLM уже можно действительно назвать выдающимся, на практике они подкидывают разработчикам широкий ряд проблем производительности: от запредельных объемов данных до оптимизации гиперпараметров. Все это приводит к потребности в ускорении обучения.

Мы подготовили серию материалов, которые помогут разобраться в ускорении обучения нейросетей. В этой статье рассмотрим различные теоретические аспекты от аппаратного ускорения до правильной организации самого обучения, в следующей — поговорим о практике. В общем, нас ждет глубокое погружение в тему. Приятного прочтения! 

Читать далее

Хайп вокруг аппаратного ускорения ИИ и реальная ситуация. Обучение модели на телефоне и результаты в миллисекундах

Уровень сложностиПростой
Время на прочтение8 мин
Охват и читатели2.3K

Сегодня в ленте было про GPU для дата-центров. Смешно было про "мейнфреймы в офисе для AI" - в статье, на которую ссылается автор, нет ничего про то, что искуственный интеллект может или будет работать на мейнфреймах. И опять про "аппаратное ускорение AI" на пользовательских устройствах. Автор, вы сами попробуйте добраться до этого аппаратного ускорения, и если найдете как - напишите статью. А то элементарная попытка использования GPU для работы TensorFlow Lite приводит только к потерянному времени, а ускорители NPU больше не поддерживаются именно там, где должны были бы. То есть за хайпом вокруг "аппаратного ускорения ИИ" производители создали новую категорию устройств, и теперь стандартно ноутбук будет стоить в 2 раза больше, чем было раньше. А по факту пользоваться этим ускорением будут только компании-производители, чтобы еще больше заработать денег на пользователях через рекламу, "правильные" модели и торговлю персональными данными.

А мы сегодня запустим TensorFlow Lite на устройствах разного класса и года выпуска и посмотрим, что там с производительностью и ускорением.

Читать далее

Работа с кодом на C++ в Swift

Время на прочтение9 мин
Охват и читатели1.9K

Привет, Хабр! Меня зовут Иван Мясников, я CTO проекта «Виртуальный ассистент» в МТС Диджитал. Встраивание кода С++ в приложения для iOS — достаточно трудная задача. Еще сложнее собрать SDK для дальнейшей поставки в сторонние приложения, используя логику на С++ совместно со Swift. В этой статье я расскажу, как мы создавали такой SDK так, чтобы он встраивался в любое приложение без танцев с целевой архитектурой процессора.

Встраивание C++ в Swift позволяет использовать один код на разных платформах и ускорить некоторые задачи, где Swift не хватает быстродействия. У нас есть библиотека на C++ для работы с ML на Tensorflow Lite. И эту библиотеку мы хотели встроить на Android, iOS, Linux под различные платформы и архитектуры процессора без переписывания логики оттуда на Kotlin, Swift или что-нибудь еще. В этой статье я расскажу, как мы заставили код на C++ работать в iOS и какие тут есть тонкости и ограничения. Я ориентировался на читателей, у которых может не быть экспертизы в iOS или в C++, и старался не погружаться в глубокие дебри. Этот материал познакомит с решениями, к которым мы пришли экспериментально, подбирая подходящие варианты под нашу задачу.

Читать далее

Машинное обучение в обучении человека. Развитие проекта RuLearn

Уровень сложностиПростой
Время на прочтение8 мин
Охват и читатели1.4K

Уже больше года я занимаюсь проектом RuLearn. Это довольно большое мобильное приложение на ~10000 строчек кода, которое реализует метод интервальных повторений, об истории проекта можно прочитать в моих предыдущих публикациях 1 и 2. Проект получился удачным, и даже побывал в числе победителей школьного московского конкурса "Инженеры будущего". Школьного, потому автор проекта - школьник :)

За лето RuLearn в проекте многое изменилось, и сейчас я хочу зафиксировать результат, связанный с добавлением машинного обучения. Сейчас, когда модель готова и можно будет опять переключиться на программирование мобильной части, важно записать, что было сделано. Иначе потом и не вспомнишь.

Как я провел летние каникулы

Netflix знает о нас все?

Время на прочтение11 мин
Охват и читатели2K

От проката дисков до рекомендательных систем

Представьте себе, сколько компании вкладывают, чтобы подманить вас к товару. Сегодня будто не спрос рождает предложение, а предложение взывает к желаниям.

Рекомендательные системы Netflix разрабатывались для повышения общего стримингового времени, продления подписки. Нужно, чтобы поток сериалов так и лился в ваши головы, а вы неустанно тыкали на кнопку подписки каждый месяц или не вздумывали даже ее отменять.

Хотя все начиналось с DVD дисков и проката…

История Netflix началась в 1997 году, когда Рид Хастингс и Марк Рэндольф основали компанию в Скотс‑Вэлли, Калифорния. Первоначально Netflix позиционировалась как онлайн‑сервис по аренде DVD‑дисков, используя интернет для заказа и почтовую службу для доставки.

Читать далее

Задача распознавания эмоций. Часть 2. Три кита качества

Уровень сложностиСредний
Время на прочтение15 мин
Охват и читатели1.8K

Данная часть будет посвящена теоретическому обзору проблем ML и их решений в контексте задачи распознавания эмоций. Не смотря на то, что многие из перечисленных проблем уже давно изучены, а методы борьбы с ними реализованы в существующих фреймворках, знать хотя бы об их существовании будет очень полезно.

В этой части мы коротко поговорим о данных, о работе сверточных нейросетей и о глобальных параметрах. От том что такое СГС и почему нельзя решать задачу в виде линейного уравнения. Затронем тему оптимизаторов и ответим на вопрос почему нельзя просто использовать обычный градиентный спуск. В общем, обо всех деталях коротко и структурно.

Читать далее

Magento 2: Visual Search модуль (php + Tensorflow)

Уровень сложностиСредний
Время на прочтение13 мин
Охват и читатели940

Всем привет! Давайте знакомиться ;) Я Аня, и я php разработчик. Основной стек - Magento. Очень люблю в свободное время писать всякие интересные штуки, и сегодня я хочу поделиться своей наработкой для реализации поиска по изображению в Magento 2. На мой взгляд - это полезная фича, и довольно удобная для пользователей.

Для нетерпеливых, вот прямая ссылка на github

Читать далее

Как написать своего нейросотрудника?

Уровень сложностиСредний
Время на прочтение22 мин
Охват и читатели11K

Конечно, прекрасно подключить API от OpenAI и разыграть своего руководителя новым консультантом… Но подобные чат-боты не могут ориентироваться в данных компании и предоставлять адекватные ответы. Можно хотя бы не рассчитывать на увольнение:)

В чем отличие модифицированного чат-бота, нейросотрудника от обычного окошка с GPT 4.0?  — он может ориентироваться в нужной вам информации лучше: составлять подборки резюме для дальнейшего анализа живым HR-ом, общаться с клиентами скриптами, даже подбирать контент-план на основе данных о компании и помогать расписывать ТЗ для сотрудников. 

В этой работе мы попробуем написать своего простого нейросотрудника, а точнее HR-менеджера. Начнем с теоретической части про векторные базы данных и обучение, закончим практикой, разобрав конкретный пример. 

Если не хочется читать теорию – переходите в конец статьи. 

Читать далее

Ближайшие события

Задача распознавания эмоций. Часть 1. Введение

Уровень сложностиПростой
Время на прочтение4 мин
Охват и читатели1.9K

Распознавание эмоций.

Данная статья была подготовлена на основе презентации моей курсовой работы по компьютерному зрению. Ее цель - это краткий обзор аспектов машинного обучения в контексте задачи распознавания эмоций. То есть, в данной стать мы не будем излишне углубляться в детали, но при этом затронем практически все проблемы, которые так или иначе связаны с одной задачей: построение модели распознавания эмоций.

Статья будет состоять из 3 частей:

1. Введение
Описание и постановка задачи распознавания эмоций.

2. Три кита качества
Данные;
Архитектура;
Гиперпараметры.

3. Запуск модели
Разбор моего ноутбука с работой по шагам.

Каждая из частей будет более практическая чем предыдущая и постепенно перейдет от общей теории к реальному коду.

Читать далее

Революционный подход к нейросетям: рассказываем про KAN (Kolmogorov-Arnold Networks)

Уровень сложностиСредний
Время на прочтение12 мин
Охват и читатели17K

Эволюция архитектуры нейронных сетей уходит корнями в фундаментальные работы, заложенные в 1940-х годах Уорреном Маккаллохом и Уолтером Питcом, которые предложили концепцию искусственных нейронов и их взаимосвязь. 

Однако значительные прорывы произошли только в 1980-х годах с разработкой алгоритмов обратного распространения ошибки: алгоритм Геоффри Хинтона и других – все это позволило создавать более глубокие нейронные сети и улучшить методы обучения. 

В это время появились классические архитектуры, многослойные перцептроны (MLP,  и сверточные нейронные сети (CNN), которые революционизировали различные области, включая компьютерное зрение, обработку естественного языка и распознавание образов – теперь мы говорим про своего рода инновационную архитектуру. 

Читать далее

Машинное обучение с Python и TensorFlow на Windows. Быстрый старт

Уровень сложностиПростой
Время на прочтение6 мин
Охват и читатели10K

Словосочетание «машинное обучение» становится всё более значимым с каждым годом и проникает во все возможные сферы жизни, а с появлением в открытом доступе таких нейронных сетей как Chat GPT [1] интерес к машинному обучению стал высок как никогда. Но при этом многих отпугивает сложность создания своих систем на основе машинного обучения, потому что нужно одновременного использовать и настраивать много разных инструментов разработки.

Поэтому я хочу представить вашему вниманию максимально простую инструкцию для быстрого погружения в мир машинного обучения. Инструкция ориентирована в первую очередь на начинающих программистов, мы будем применять Python 3 [2] с библиотекой TensorFlow [3]. Это лучший выбор для начинающих из-за простоты языка и большого сообщества разработчиков, использующих TensorFlow.

Читать далее

Машинное обучение в браузере

Время на прочтение9 мин
Охват и читатели4.1K

Меня зовут Алексей, сегодня мы с вами поговорим, как можно ускорить вычисления машинного обучения веб приложения с помощью WASM, WebGL или WebGPU.

Когда фронтенд‑разработчик слышит о машинном обучении в браузере, первое, что приходит ему на ум, это вопрос: «Как это может быть применено? Мы же работаем в браузере на JS, который, как известно, медленный (по сравнению с компилируемыми языками)».

Читать далее

Reformer на TRAX?

Уровень сложностиПростой
Время на прочтение11 мин
Охват и читатели1.2K

Что такое Reformer и почему он круче Transformer’a (GPT-4...)?

Давайте предварительно начнем с того, что же такой Reformer и почему благодаря ему мы можем рассчитывать на расширение контекстов вплоть до десятков тысяч слов. 

В классической архитектуре Transformer механизм внимания работает со сложностью, которая масштабируется квадратично с увеличением длины последовательности. 

Это происходит потому, что каждый токен в последовательности должен вычислять оценки внимания со всеми другими токенами, что приводит к плотной матрице внимания, размер которой растет с квадратом длины последовательности – мрак для вычислительных способностей наших TPU и GPU. 

Читать далее

Как выбрать правильный сервер c подходящими для ваших нейросетей CPU/GPU

Уровень сложностиПростой
Время на прочтение5 мин
Охват и читатели17K

С развитием генеративного искусственного интеллекта (ИИ) и расширением сфер его применения создание серверов с искусственным интеллектом стало критически важным для различных секторов — от автопрома до медицины, а также для образовательных и государственных учреждений.

Эта статья рассказывает о наиболее важных компонентах, которые влияют на выбор сервера для искусственного интеллекта, — о центральном и графическом процессорах (CPU и GPU). Выбор подходящих процессоров и графических карт позволит запустить суперкомпьютерную платформу и значительно ускорить вычисления, связанные с искусственным интеллектом на выделенном или виртуальном (VPS) сервере.

Читать далее

Как обучают GPT

Уровень сложностиПростой
Время на прочтение6 мин
Охват и читатели15K

Привет, Хабр! Меня зовут Родион Уколов, я занимаюсь искусственным интеллектом в компании Friflex. Мы помогаем компаниям внедрять модели машинного обучения и развиваем свои цифровые продукты.

Может быть, вы помните статью моего коллеги о том, как решать реальные задачи с ChatGPT. В этой статье я предлагаю попробовать глубже разобраться, что из себя представляет GPT-модель и как ее обучают. 

Читать далее