Как стать автором
Обновить
1
-0.5
Анна Родина @Ann_Rodina

Контент-менеджер

Отправить сообщение

Как за месяц научить нейросеть говорить на татарском: опыт MTS AI

Уровень сложностиПростой
Время на прочтение5 мин
Количество просмотров2.7K

Привет, Хабр! Меня зовут Настя Бурьянская, я занимаюсь координацией  LLM-проектов в MTS AI. Сегодня я расскажу вам о том, как мы силами пяти человек за месяц научили нашу большую языковую модель Cotype Lite общаться на татарском языке.Я лишь недавно пришла в компанию, проработав до этого несколько лет проджектом в e-com, поэтому сфера LLM для меня все еще немного в новинку. Поэтому, когда мне дали задание перевести нашу модель на татарский язык, я была воодушевлена и немного напугана, потому что лидировать разработку большой языковой модели мне довелось впервые. Эту статью сложно назвать классической историей успеха — скорее, вас ждет рассказ о том, чему я научилась, занимаясь этим проектом.

Зачем вообще понадобилась модель на татарском?

Забегая вперед, скажу, что мы представили нашу новую версию модели на форуме Kazan Digital Week, который проходил в Татарстане с 9 по 11 сентября. У нее почти тот же функционал, что и у версии на русском языке — может отвечать на общие вопросы, анализировать документы до 8 тысяч токенов и суммаризировать их.

Читать далее
Всего голосов 13: ↑11 и ↓2+15
Комментарии6

Промпт-инжиниринг: как найти общий язык с ИИ

Уровень сложностиПростой
Время на прочтение10 мин
Количество просмотров6K

В последние годы мир информационных технологий переживает настоящую революцию, связанную с развитием искусственного интеллекта (ИИ). Одной из наиболее захватывающих и новых профессий в этой области становится промпт‑инжиниринг. Меня зовут Наталья Бруй, я руководитель группы промпт‑инженеров MTS AI. В этой статье я расскажу почему эта профессия приобретает всё большую значимость и как можно использовать приёмы промпт‑инжиниринга в работе и повседневной жизни.

Читать далее
Всего голосов 21: ↑18 и ↓3+22
Комментарии2

Оценка LLM с большим окном контекста

Время на прочтение7 мин
Количество просмотров3K

Всем привет!

Мы в команде фундаментальных исследований MTS AI занимаемся исследованиями в области обработки естественного языка и компьютерного зрения, а также строим свои фундаментальные языковые модели. Недавно у нас получилось достичь уровня gpt-4 на собственном ограниченном датасете большого контекста. Расскажем, как нам это удалось.

Читать далее
Всего голосов 9: ↑9 и ↓0+12
Комментарии1

Вызов функций с помощью LLM

Время на прочтение14 мин
Количество просмотров4.9K

Всем привет, меня зовут Алан, я разработчик-исследователь из команды фундаментальных исследований MTS AI. Мы изучаем возможности генеративного ИИ, и видим, что большие языковые модели отлично справляются с различными текстовыми задачами, но мы можем расширить их функционал. Например, пока что LLM не может правильно посчитать логарифм, узнать погоду или какую-то другую информацию. Как решить эту задачу? Нужно научить модель пользоваться внешними инструментами/функциями. В этой статье мы поговорим о вызове функций с помощью больших языковых моделей, рассмотрим некоторые проприетарные и открытые модели, связанные исследования, а затем проведем небольшой эксперимент с отправкой электронной почты при помощи LLM.

Читать далее
Всего голосов 10: ↑10 и ↓0+15
Комментарии3

Долой рандом, или ищем лучшие настройки для аугментации текстов

Уровень сложностиСредний
Время на прочтение9 мин
Количество просмотров1.3K

Всем привет. На связи Игорь Буянов, старший разработчик в MTS AI. Этот пост — текстовый вариант моего доклада, с которым я выступал в прошлую пятницу на Pycon 2024. Расскажу о том, как мы оптимизировали параметры аугментаций для текстовых данных и что из этого получилось. Текст рассчитан на широкий круг читателей, поэтому если вы слышите про аугментации впервые — не пугайтесь, разберемся.

Читать далее
Всего голосов 4: ↑4 и ↓0+6
Комментарии3

Есть ли жизнь до fit/predict?

Уровень сложностиСредний
Время на прочтение12 мин
Количество просмотров1.9K

Всем привет! Меня зовут Даниил Карпов, я старший NLP-разработчик в MTS AI. В эпоху LLM и огромных датасетов, вмещающих в себя весь интернет, кажется, что качество самих данных ушло немного на второй план: чем больше данных/параметров, тем лучше. Однако экстенсивный рост рано или поздно упирается в ограничения, когда становится уже слишком дорого/невозможно его продолжать. Роль хороших данных не стоит недооценивать, грамотный отбор может помочь значительно ускорить и удешевить обучение с одной стороны, тогда как отбраковка откровенно плохой разметки поможет улучшить качество с другой. Здесь я расскажу о некоторых из таких методов, которые использовались в процессе подготовки данных.

Читать далее
Всего голосов 8: ↑8 и ↓0+9
Комментарии0

Как мы в MTS AI собрали команду исследователей меньше, чем за год

Уровень сложностиПростой
Время на прочтение16 мин
Количество просмотров1.9K

Привет, я Марина, HR-бизнес-партнер в MTS AI. Вот уже несколько лет я занимаюсь подбором сотрудников на вакансии, связанные с ML.  Мы стремимся находить самых крутых спецов и, конечно, с каждым годом конкуренция за них растет. И это неудивительно: сфера искусственного интеллекта сейчас на подъеме,  всем нужны ML-инженеры. 

Когда в MTS AI решили сформировать направление фундаментальных исследований, подбор специалистов тоже доверили мне. В условиях дефицита кадров — это была, что называется, задача со звездочкой. Тем не менее за год нам удалось собрать специалистов с опытом работы в Facebook (принадлежит Meta — признана экстремистской в России), Google, Toyota, Huawei, CERN и победами в международных соревнованиях. 

От коллег-HR и знакомых разработчиков из других компаний я часто слышала: как вы смогли их нанять, таких же ребят кофе с печеньками и офисом в центре не заманишь? Почему они выбрали вас, маленькую дочку МТС с пятью сотнями сотрудников, а не какого-нибудь ИТ-гиганта? 

В этой статье я расскажу, как нам удалось собрать группу специалистов по фундаментальным исследованиям за год. Далее я также дам слово своим коллегам-исследователям. Они ответят на вопросы о своих проектах и принципах работы в команде. 

Читать далее
Всего голосов 17: ↑12 и ↓5+10
Комментарии0

Сравнение работы MTS AI Chat с другими русскоязычными LLM

Уровень сложностиПростой
Время на прочтение8 мин
Количество просмотров5.1K

Всем привет!

Мы в MTS AI занимаемся созданием технологий и продуктов на базе искусственного интеллекта. Непосредственно наша группа фундаментальных исследований разрабатывает LLM и модели для генерации кода.

В этой статье мы представим нашу первую фундаментальную модель MTS AI Chat-7B. Также сравним результаты ее работы с другими русскими языковыми моделями, такими как YandexGPT, GigaChat и GigaChat‑Pro.

Читать далее
Всего голосов 20: ↑18 и ↓2+21
Комментарии3

Обзор Llemma: новая математическая open-source модель

Уровень сложностиСредний
Время на прочтение6 мин
Количество просмотров8.3K

Привет! Меня зовут Дарина, и я занимаюсь фундаментальными исследованиями в MTS AI. Основной фокус нашей работы сейчас — обучение больших языковых моделей, их тестирование и оптимизация.

Сегодня хочу сделать обзор на недавно вышедшую статью LLEMMA: an open language model for mathematics. Расскажу про обучение модели, новый датасет Proof-Pile-2 и в конце сравню ее с ChatGPT и GPT-4 на ЕГЭ заданиях по профильной математике.

Читать далее
Всего голосов 10: ↑9 и ↓1+12
Комментарии6

Собираем русскоязычный лонгформер шаг за шагом

Время на прочтение8 мин
Количество просмотров8.1K

Привет, меня зовут Андрей Казначеев, я NLP engineer в компании MTS AI. В этой статье я расскажу, как создал лонгформер для русского языка. Все началось с того, что мне подкинули задачу по классификации длинных диалогов. Тексты длинные, а большинство популярных моделей имеют строгое ограничение по длине входной последовательности. Хотелось сделать решение умнее, чем просто побить текст на куски, однако ничего готового для русского языка не нашел. Тогда я задумался, а так ли сложно сделать свою собственную версию лонгформера под русский язык? Оказалось, совсем не сложно.

Читать далее
Всего голосов 38: ↑38 и ↓0+38
Комментарии21

LLaMa vs GigaChat: может ли опенсорсная модель работать лучше LLM с 13 млрд параметрами?

Время на прочтение9 мин
Количество просмотров11K

Всем привет, меня зовут Алан, я разработчик-исследователь в MTS AI, мы сейчас активно изучаем LLM, тестируя их возможности. В настоящее время в России вышло несколько коммерческих языковых моделей, в том числе GigaChat и YandexGPT, которые хорошо выполняют текстовые задачи. В этой статье показывается, что языковая модель меньшего размера, обученная на открытых данных за несколько часов, показывает сравнительно неплохую, а в некоторых случаях и лучшую производительность относительно больших коммерческих решений. На небольшом количестве примеров мы проверим способность моделей решать простые математические задачи, отвечать на вопрос по заданному контексту, в котором содержатся числа и выполнять простые текстовые инструкции. Затем мы кратко рассмотрим, как и на чем обучалась наша модель.

Читать далее
Всего голосов 9: ↑7 и ↓2+11
Комментарии7

Пять книг про NLP, с которых можно начать

Уровень сложностиПростой
Время на прочтение3 мин
Количество просмотров16K

Всем привет! Меня зовут Валентин Малых, я — руководитель направления NLP-исследований в MTS AI, вот уже 6 лет я читаю курс по NLP. Он проходит на платформе ODS, а также в нескольких университетах. Каждый раз при запуске курса студенты спрашивают меня про книги, которые можно почитать на тему обработки естественного языка. Поскольку я все время отвечаю одно и то же, появилась идея сделать пост про мой список книг, заодно описав их. 

Читать далее
Всего голосов 13: ↑13 и ↓0+13
Комментарии7

«За три года я победил в семи международных соревнованиях по ИИ». Лайфхаки и стратегии финалиста конкурсов NASA и Google

Уровень сложностиПростой
Время на прочтение5 мин
Количество просмотров3.5K

Аммар Али вместе со своим другом  Жаафаром Махмудом взяли золото каггла по созданию 3D-реконструкции. Их команда вошла в топ-10 победителей конкурса Google Image Matching Challenge 2023. Аммар Али работает старшим инженером-исследователем MTS AI и учится в аспирантуре ИТМО на факультете информационных технологий и программирования, его друг Жаафар тоже аспирант ИТМО, но учится на факультете систем управления и робототехники. В Image Matching от Google они принимают участие второй год подряд. В 2022-м вошли в топ-30. Для Аммара это далеко не первая победа в международном конкурсе. Мы решили узнать у него подробности - какое решение принесло им золото Image Matching Challenge 2023, и как вообще победить на международных соревнованиях по ИИ.

— Аммар, поздравляем тебя с победой. Расскажи немного о конкурсе.

— Google Image Matching Challenge проходит ежегодно, начиная с 2019-го. В этом году конкурс длился два месяца с 11 апреля по 12 июня. Целью было создать 3D-реконструкцию объекта по датасету из фотографий. Честно говоря, для меня это было немного сложнее, чем в прошлом году, потому что требовались не только знания в области машинного обучения. Нам было нужно применить дополнительные алгоритмы, математическую оптимизацию структуры для построения 3D-реконструкции, где до сих пор специализировались на Slam в целом в робототехнике. В конкурсе я отвечал за часть задач, связанную с искусственным интеллектом, а Жаафар занимался  оптимизацией и настройкой алгоритмов. 

— Какое решение вы предложили? 

Читать далее
Всего голосов 14: ↑11 и ↓3+16
Комментарии5

Как использовать метод Дэвида-Скина для агрегации разметки. Разбираем по шагам

Уровень сложностиСредний
Время на прочтение9 мин
Количество просмотров2.5K

Всем привет. Открываю серию статей, посвященную агрегации разметки. Этим вопросом я активно занимался, пока работал в нашем центре компетенций по работе с данными: нам нужен был механизм агрегации разметки из разных задач. По пути накопил материалов и, причесав, делюсь с вами. 

В этой части я расскажу про модель Дэвида-Скина, которая заложила основы для многих методов агрегации разметки и является второй по значимости после голосования большинством. Многие создатели проектов следуют этому методу для повышения качества данных. Изначально он был разработан в 1970-х для вероятностного моделирования медицинских обследований. Именно поэтому разберем этот метод на примере с докторами. 

Читать далее
Всего голосов 5: ↑5 и ↓0+5
Комментарии0

Переходим на личности: как создать не просто бота, а виртуального персонажа с характером и историей

Время на прочтение18 мин
Количество просмотров7.4K

Надоели стандартные боты с типовыми запросами? Да, мы вас очень понимаем.

Именно поэтому в этой статье мы решили поделиться своим исследованием по созданию не просто ботов, а виртуальных личностей с проработанным характером.

Эти наработки появились немного раньше, чем к нам пришел заказчик с запросом на виртуального персонажа, так что на наших глазах теория становилась практикой.

Читать далее
Всего голосов 8: ↑6 и ↓2+7
Комментарии3

Bag of tricks для разметки текстовых данных: Часть 2. Удаление дубликатов

Уровень сложностиСредний
Время на прочтение9 мин
Количество просмотров3.4K

Привет! Меня зовут Ирина Кротова, я NLP-исследователь из компании MTS AI. В этой статье из цикла про разметку данных я расскажу об ещё одном способе собирать данные более качественно и экономить на разметке — фильтрации похожих друг на друга текстов.

В предыдущей статье я рассказывала о том, что такое аннотация данных, как это связано с работой инженера машинного обучения и о способах сократить количество ручной разметки в проекте.

Читать далее
Всего голосов 3: ↑3 и ↓0+3
Комментарии1

AI-focused digest: ИИ для удаления шумов с космических фото, генерация изображений на основе фМРТ мозга

Время на прочтение4 мин
Количество просмотров1.1K

Всем привет! 

В апрельском выпуске AI-focused digest мы расскажем, как можно сократить затраты на обучение больших ML-моделей, как японские ученые научили нейросеть генерировать изображения по фМРТ мозга. Также поговорим о новом CV-алгоритме для улучшения астрономических фото. В заключении порекомендуем исследовательскую статью, которая поможет лучше понять, чего ждать от стремительного развития языковых моделей. 

Читать далее
Всего голосов 4: ↑3 и ↓1+2
Комментарии0

Bag of tricks для разметки текстовых данных: Часть 1. Четыре способа размечать меньше

Уровень сложностиСредний
Время на прочтение9 мин
Количество просмотров3.7K

Привет! Меня зовут Ирина Кротова, я NLP-исследователь из компании MTS AI. Мы не понаслышке знаем, что сбор и разметка данных часто становятся “бутылочным горлышком" в проектах, связанных с машинным обучением. У нас в компании есть постоянная необходимость в разных видах разметки аудио, текста и изображений.

В этой статье я хочу поделиться лайфхаками по подготовке и разметке текстовых датасетов и возможными "граблями", на которые можно наступить, если вы создаете датасет впервые. Многие из этих советов универсальны, но основной фокус сделан на обработке естественного языка, поскольку я опираюсь в первую очередь на собственный опыт: в разное время я работала с юридическими документами, доменными чат-ботами и участвовала в подготовке и проведении соревнования по автоматической детоксификации текстов.

Читать далее
Всего голосов 10: ↑10 и ↓0+10
Комментарии2

Автоматическое исправление ошибок ASR с помощью sequence-to-sequence моделей

Время на прочтение11 мин
Количество просмотров3.1K

Всем привет, я Алсу Вахитова — NLP-разработчица в MTS AI. Вместе с коллегами мы создаем различные алгоритмы обработки текста и извлечения информации из него. Большое количество проектов включает в себя взаимодействие с командами из “соседних” доменов, например, automatic speech recognition (ASR). Одна из таких задач - исправление ошибок в результате работы ASR методов (ASR error correction). В этой статье я приведу теоретический обзор некоторых статей, решающих данную проблему.

Читать далее
Всего голосов 3: ↑3 и ↓0+3
Комментарии3

Как мотивировать команду нефинансовыми методами, поддержать сотрудников в трудные времена и завоевать их доверие

Время на прочтение9 мин
Количество просмотров5.6K

Привет, меня зовут Павел Дубков, я - директор департамента интеграции MTS AI. 

Я достаточно давно руковожу различными подразделениями, но еще лет 15 назад, когда был обычным разработчиком, стал присматриваться к своим руководителям и задаваться вопросом: что заставляет людей работать много, эффективно, искать новые подходы к решению различных задач и в целом ходить на работу с удовольствием?

В этой статье я расскажу о способах нефинансовой мотивации, которые я использую в своей команде. Немного похвалюсь. Так сложилось, что мне всегда было интереснее прочитать какой-нибудь мануал, который можно использовать в работе, чем литературу по управлению персоналом. Поэтому все, о чем вы прочитаете далее, - мои собственные лайфхаки и выводы, а также приемы других руководителей, а не прочитанные где-то умные мысли. Они будут полезными всем, кто сейчас хочет сплотить команду и помочь сотрудникам работать эффективнее.

Читать далее
Всего голосов 19: ↑13 и ↓6+7
Комментарии21
1

Информация

В рейтинге
Не участвует
Откуда
Москва, Москва и Московская обл., Россия
Работает в
Дата рождения
Зарегистрирована
Активность