Пройдя нелегкий путь от выпускника факультета радиофизики, через сотрудника государственного научного учреждения, преподавателя авторского спецкурса в любимой alma mater, я наконец стал уважаемым сотрудником R&D отдела очень крутого стартапа в области дополненной реальности Banuba.
Крутая компания, крутые задачи, напряженный график, шикарные условия и оплата труда… но после работы в НИИ, где ты
Наверняка всем доводилось быть свидетелями оценки на глазок степени сходства ребенка с родителями: что-нибудь типа «вылитый папа, но на маму тоже похож!!!»
Как в примере на изображении, можно оценить степень похожести в процентах. Можно задействовать еще родственников, для более точного описания лица малыша в виде взвешенной суммы лиц родни…
Меня зовут Вячеслав, я хронический математик и уже несколько лет не использую циклы при работе с массивами…
Ровно с тех пор, как открыл для себя векторные операции в NumPy. Я хочу познакомить вас с функциями NumPy, которые чаще всего использую для обработки массивов данных и изображений. В конце статьи я покажу, как можно использовать инструментарий NumPy, чтобы выполнить свертку изображений без итераций (= очень быстро).
Если проанализировать форумов о рынках (в том числе Форекс), можно выделить два достаточно устойчивых мнения, назовём их пессимистическим и оптимистическим:
Пессимисты утверждают: рынок случаен «потому что я построил график случайного процесса и мой друг (профессиональный трейдер) не смог отличить его от графика EURUSD», а значит иметь стабильный доход на рынке( на Форекс) невозможно по определению!
Оптимисты им возражают: если бы рынок был случаен, котировки не гуляли бы в окрестности 1, а ушли в бесконечность. Значит рынок неслучаен и на нём можно зарабатывать. Я видел реально стабильно зарабатывающую стратегию с большим профит-фактором (больше стольки-то)!
Попробуем остаться реалистами и извлечь пользу из обоих мнений: предположим, что рынок случаен, и на основании этого предположения построим методику проверки доходности торговой системы на неслучайность.
Рассматриваемые в статье методики универсальны для любых рынков, будь то фонд, Форекс или любой другой!
Статистика приходит к нам на помощь при решении многих задач, например: когда нет возможности построить детерминированную модель, когда слишком много факторов или когда нам необходимо оценить правдоподобие построенной модели с учётом имеющихся данных. Отношение к статистике неоднозначное. Есть мнение, что существует три вида лжи: ложь, наглая ложь и статистика. С другой стороны, многие «пользователи» статистики слишком ей верят, не понимая до конца, как она работает: применяя, например, тест Стьюдента к любым данным без проверки их нормальности. Такая небрежность способна порождать серьёзные ошибки и превращать «поклонников» теста Стьюдента в ненавистников статистики. Попробуем поставить точки над i и разобраться, какие модели случайных величин должны использоваться для описания тех или иных явлений и какая между ними существует генетическая связь.
В этом посте речь пойдёт о реализации процедуры вычисления значения функции распределения Стьюдента без использования каких-либо специальных математических библиотек. Только Java (либо C/C++, код вполне универсален).
Думаю, обосновывать необходимость тщательного тестирования и подбора параметров торговых стратегий нет необходимости… Лучше поясню, почему именно Matlab.
В торговом терминале MetaTrader есть встроенная система тестирования и настройки торговых стратегий, позволяющая прогнать стратегию на заданном участке истории и посмотреть на результаты торговли как в графическом представлении, так и в виде таблички с характеристиками эффективности работы данной стратегии на данном участке истории. Как это выглядит для стратегии Nova, смотрите ниже.