Привет, Хабр! Под катом пойдёт речь о реализации свёрточной нейронной сети архитектуры InceptionV3 с использованием фреймворка Keras. Статью я решил написать после ознакомления с туториалом "Построение мощных моделей классификации с использованием небольшого количества данных". С одобрения автора туториала я немного изменил содержание своей статьи. В отличие от предложенной автором нейронной сети VGG16, мы будем обучать гугловскую глубокую нейронную сеть Inception V3, которая уже предустановлена в Keras.
Вы научитесь:
- Импортировать нейронную сеть Inception V3 из библиотеки Keras;
- Настраивать сеть: загружать веса, изменять верхнюю часть модели (fc-layers), таким образом, приспосабливая модель под бинарную классификацию;
- Проводить тонкую настройку нижнего свёрточного слоя нейронной сети;
- Применять аугментацию данных при помощи ImageDataGenerator;
- Обучать сеть по частям для экономии ресурсов и времени;
- Оценивать работу модели.
При написании статьи я ставил перед собой задачу представить максимально практичный материал, который раскроет некоторые интересные возможности фреймворка Keras.