
Генерация 3D-моделей из текстового описания и видеозаписей, сделанных на обыкновенный смартфон, конкурент DALL-E, ускоренная GAN-инверсия и многое другое в подборке материалов за декабрь, а также небольшие новости о будущем дайджеста.
User
Генерация 3D-моделей из текстового описания и видеозаписей, сделанных на обыкновенный смартфон, конкурент DALL-E, ускоренная GAN-инверсия и многое другое в подборке материалов за декабрь, а также небольшие новости о будущем дайджеста.
Трансформеры шагают по планете! В статье вспомним/узнаем как работает visual attention, поймём что с ним не так, а главное как его поправить, чтобы получить на выходе best paper ICCV21.
Есть ли способ оптимизировать рабочий процесс проекта Data Science всего в несколько строк кода? Да. Это Prefect. Делимся кратким руководством по работе с этим инструментом, пока у нас начинается флагманский курс Data Science.
Всё началось с мема, который вы видите выше.
Сначала я посмеялся. А потом задумался: может ли быть так, что скриншот базы равноценен её снэпшоту?
Для этого у нас должно быть такое графическое представление базы, которое 1 к 1 отображает данные и структуру. Если сделать скриншот такого представления, из него можно восстановить базу.
Или... графическое представление и должно быть базой!
2021 год в машинном обучении ознаменовался мультимодальностью — активно развиваются нейросети, работающие одновременно с изображениями, текстами, речью, музыкой. Правит балом, как обычно, OpenAI, но, несмотря на слово «open» в своём названии, не спешит выкладывать модели в открытый доступ. В начале года компания представила нейросеть DALL-E, генерирующую любые изображения размером 256×256 пикселей по текстовому описанию. В качестве опорного материала для сообщества были доступны статья на arxiv и примеры в блоге.
С момента выхода DALL-E к проблеме активно подключились китайские исследователи: открытый код нейросети CogView позволяет решить ту же проблему — получать изображения из текстов. Но что в России? Разобрать, понять, обучить — уже, можно сказать, наш инженерный девиз. Мы нырнули с головой в новый проект и сегодня рассказываем, как создали с нуля полный пайплайн для генерации изображений по описаниям на русском языке.
В проекте активно участвовали команды SberAI, SberDevices, Самарского университета, AIRI и SberCloud.
Мы обучили две версии модели разного размера и дали им имена великих российских абстракционистов – Василия Кандинского и Казимира Малевича:
1. ruDALL-E Kandinsky (XXL) с 12 миллиардами параметров;
2. ruDALL-E Malevich (XL), содержащая 1,3 миллиарда параметров.
Некоторые версии наших моделей доступны в open source уже сейчас:
1. ruDALL-E Malevich (XL) [GitHub, HuggingFace]
2. Sber VQ-GAN [GitHub, HuggingFace]
3. ruCLIP Small [GitHub, HuggingFace]
4. Super Resolution (Real ESRGAN) [GitHub, HuggingFace]
Две последние модели встроены в пайплайн генерации изображений по тексту (об этом расскажем ниже).
Версии моделей ruDALL-E Malevich (XL), ruDALL-E Kandinsky (XXL), ruCLIP Small, ruCLIP Large, Super Resolution (Real ESRGAN) также скоро будут доступны в DataHub.
Обучение нейросети ruDALL-E на кластере Christofari стало самой большой вычислительной задачей в России:
1. Модель ruDALL-E Kandinsky (XXL) обучалась 37 дней на 512 GPU TESLA V100, а затем ещё 11 дней на 128 GPU TESLA V100 — всего 20 352 GPU-дней;
2. Модель ruDALL-E Malevich (XL) обучалась 8 дней на 128 GPU TESLA V100, а затем еще 15 дней на 192 GPU TESLA V100 – всего 3 904 GPU-дня.
Таким образом, суммарно обучение обеих моделей заняло 24 256 GPU-дней.
Разберём возможности наших генеративных моделей.
В отделе продаж можно услышать аббревиатуру ABC: Always Be Closing, что означает заключение сделки с покупателем. Последнее десятилетие породило еще одну аббревиатуру ABCD: Always Be Collecting Data.
Мы используем Google для почты, карт, фотографий, хранилищ, видео и многого другого. Мы используем Twitter, чтобы читать поток сознания одного президента. Мы используем Facebook для обмена сообщениями и… ну, почти все. Но наши родители пользуются им. Мы используем TikTok… Понятия не имею, зачем.
На самом деле, оказывается, что большинство из вышеперечисленного бесполезно… Ничего подобного, суть в том, что мы их используем. Мы их используем, и они бесплатны. В экономике XXI века, если вы не платите за товар, вы являетесь товаром.
Итак, короче говоря, я хотел выяснить, насколько корпорация Alphabet, владелец Google, обо мне знает. Крошечная доля, я посмотрел на историю геолокации. Я никогда не отключал службы определения местоположения, потому что ценил комфорт выше конфиденциальности. Плохая идея.
Всем привет! В данном посте я хотел бы рассказать про весьма интересную и важную деятельность в области глубокого обучения как прореживание (прунинг) нейронных сетей. На просторах сети есть неплохие материалы по данной теме, например, статья на Хабре трехлетней давности.
Здесь будет приведен общий обзор основных методик прореживания нейронных сетей, разработанных человечеством в его (почти) безграничной изобретательности, а в последующем я планирую рассмотреть некоторые подходы более подробно. Вообще говоря, идей на самом деле существует гораздо больше, чем будет рассмотрено ниже, здесь я приведу самые популярные подходы в подробностях, пропорциональных пониманию автором конкретного метода.
Поехали!
Как я пришел к покупке приточной вентиляции для квартиры с готовым ремонтом. Как купил ее за 150к и чуть не потратил деньги зря. Статья будет полезна тем, кто планирует купить очиститель воздуха, бризер или приточку.
Это простая инструкция как включить гибридную графику intel-nvidia на ноутбуке. Чтобы определенные приложения запускались на дискретном чипе, а другие на встроенном. На свое удивление в интернете не нашел простую инструкцию того, как запускать определенные приложения, используя дискретную графику. Так что напишу так просто, на сколько считаю нужным
Программирование сегодня используется во многих областях науки, где отдельным ученым часто приходится собственноручно писать код для своих проектов. Для большинства ученых, однако, компьютерные науки не являются их областью знаний; они изучили программирование по необходимости. Я считаю себя одним из них. Хотя мы можем быть достаточно хорошо знакомы с программированием со стороны софта, мы редко имеем даже базовое представление о том, как железо влияет на производительность кода.
Цель этого урока — дать непрофессиональным программистам краткий обзор особенностей современного оборудования, которые нужно понимать, чтобы писать быстрый код. Это будет дистилляция того, что мы узнали за последние несколько лет. Этот учебник будет использовать Julia, потому что она позволяет легко продемонстрировать эти относительно низкоуровневые соображения на высокоуровневом интерактивном языке.
Здесь есть все, что вам нужно знать о различных версиях и функциях Java.
Java 8, Java 11, Java 13, Java 14 — какая разница?
Вы можете использовать это руководство, чтобы получить практическую информацию о том, как найти и установить последнюю версию Java, понять различия между дистрибутивами Java (AdoptOpenJdk, OpenJDK, OracleJDK и т.д.), А также получить обзор возможностей языка Java, включая версии Java 8-14.
Примечание переводчика
17 февраля был опубликован перевод Руководство по версиям и возможностям Java
В комментарии к нему Julegg написал
Там у Марко уже описание java-14 добавилось. Будет ли тут перевод добавлен?
Вашему вниманию предлагается обновленная версия руководства от 09 апреля 2020 г.