Pull to refresh
2
Karma
0
Rating

User

Где и как изучать машинное обучение?

Machine learning *Artificial Intelligence
Tutorial

Всем привет!


Ни для кого не секрет, что интерес к машинному обучению и искусственному интеллекту растет в лучшем случае по экспоненте. Тем временем мой Яндекс Диск превратился в огромную свалку пейперс, а закладки в Google Chrome превратились в список, длина которого стремится к бесконечности с каждым днем. Таким образом, дабы упростить жизнь себе и вам, решил структурировать информацию и дать множество ссылок на интересные ресурсы, которые изучал я и которые рекомендую изучать вам, если вы только вначале пути (буду пополнять список постоянно).

Путь для развития новичка я вижу примерно так:

Untitled_presentation
Читать дальше →
Total votes 47: ↑44 and ↓3 +41
Views 73K
Comments 19

«День знаний» для ИИ: опубликован ТОП30 самых впечатляющих проектов по машинному обучению за прошедший год (v.2018)

Cloud4Y corporate blog Big Data *Machine learning *Research and forecasts in IT *Studying in IT
Translation


Чтобы выбрать ТОП 30 (только 0,3%), за прошедший год команда Mybridge сравнила почти 8800 проектов по машинному обучению с открытым исходным кодом.

Это чрезвычайно конкурентный список, и он содержит лучшие библиотеки с открытым исходным кодом для машинного обучения, наборы данных и приложения, опубликованные в период с января по декабрь 2017 года. Чтобы дать вам представление о качестве проектов, отметим, что среднее число звезд Github — 3558.

Проекты с открытым исходным кодом могут быть полезны не только ученым. Вы можете добавить что-то удивительное поверх ваших существующих проектов. Ознакомьтесь с проектами, которые вы, возможно, пропустили в прошлом году.


Осторожно, под катом много картинок и gif.
Total votes 31: ↑31 and ↓0 +31
Views 34K
Comments 4

Intel AI Academy — новогодний подарок для всех разработчиков AI

Intel corporate blog High performance *Programming *Machine learning *
Искусственный интеллект давно перестал ассоциироваться исключительно с суперкомпьютерами и мейнфреймами, сейчас это область профессиональных (или не очень) интересов десятков тысяч людей по всему миру. Осознавая важность задачи, Intel в рамках портала Intel Developer Zone создала специальный раздел Intel AI Academy, призванный помочь начинающим и опытным разработчикам в области Deep Learning, компьютерного зрения и других аспектов AI. Разрешите провести небольшую экскурсию по ресурсу, чтобы показать, чем он вам может быть полезен.


Total votes 10: ↑9 and ↓1 +8
Views 7.5K
Comments 1

Асинхронная загрузка больших датасетов в Tensorflow

Python *Machine learning *TensorFlow *
Tutorial

Глубокие нейронные сети сейчас модная тема.


В Сети много тюториалов и видеолекций, и других материалов обсуждающих основные принципы построения нейронных сетей, их архитектуру, стратегии обучения и т.д. Традиционно, обучение нейронных сетей производится путем предявления нейронной сети пакетов изображений из обучающей выборки и коррекции коэффициентов этой сети методом обратного распространения ошибки. Одним из наиболее популярных инструментов для работы с нейронными сетями является библиотека Tensorflow от Google.


Нейронная сеть в Tensorflow представляется последовательностю операций-слоев
(таких как перемножение матриц, свертка, пулинг и т.д.). Слои нейронной сети совместно с операциями корректировки коэффициентов образуют граф вычислений.


Процесс обучения нейронной сети при этом заключается в "предъявлении" нейронной
сети пакетов объектов, сравненнии предсказанных классов с истинными, вычисления
ошибки и модификации коэффициентов нейронной сети.


При этом Tensoflow скрывает технические подробности обучения и реализацию алгоритма корректировки коэффициентов, и с точки зрения программиста можно говорить в основном только о графе вычислений, производящем "предсказания". Сравните граф вычислений, о котором думает программист


Predicticting graph


с графом который в том числе выполняет подстройку коэффициенотов


Training graph.


Но что Tensorflow не может сделать за программиста, так это преобразовать входной датасет в датасет удобный для тренировки нейронной сети. Хотя библиотека имеет довольно много "базовых блоков".


Как с их использованием построить эффективный конвеер для "питания" (англ feed) нейронной сети входными данными я и хочу расскажу в этой статье.

Читать дальше →
Total votes 15: ↑14 and ↓1 +13
Views 9.1K
Comments 9

Открытый курс машинного обучения. Тема 4. Линейные модели классификации и регрессии

Open Data Science corporate blog Python *Algorithms *Mathematics *Machine learning *

Всем привет!


Сегодня мы детально обсудим очень важный класс моделей машинного обучения – линейных. Ключевое отличие нашей подачи материала от аналогичной в курсах эконометрики и статистики – это акцент на практическом применении линейных моделей в реальных задачах (хотя и математики тоже будет немало).


Пример такой задачи – это соревнование Kaggle Inclass по идентификации пользователя в Интернете по его последовательности переходов по сайтам.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.


Все материалы доступны на GitHub.
А вот видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017). В ней, в частности, рассмотрены два бенчмарка соревнования, полученные с помощью логистической регрессии.

Читать дальше →
Total votes 56: ↑53 and ↓3 +50
Views 429K
Comments 42

Будут ли data scientist’ы в ближайшее время заменены автоматизированными алгоритмами и искусственным интеллектом?

New Professions Lab corporate blog Data Mining *Big Data *Machine learning *
Хабр, привет! В современном машинном обучении и науке о данных можно выделить несколько трендов. Прежде всего, это глубокое обучение: распознавание изображений, аудио и видео, обработка текстов на естественных языках. Еще одним трендом становится обучение с подкреплением — reinforcement learning, позволяющее алгоритмам успешно играть в компьютерные и настольные игры, и дающее возможность постоянно улучшать построенные модели на основе отклика внешней среды.

Есть и еще один тренд, менее заметный, так как его результаты для внешних наблюдателей выглядят не так впечатляюще, но не менее важный — автоматизация машинного обучения. В связи с его стремительным развитием вновь актуальным становится вопрос о том, не будут ли data scientist’ы в конце концов автоматизированы и вытеснены искусственным интеллектом.
Читать дальше →
Total votes 20: ↑14 and ↓6 +8
Views 11K
Comments 8

Радикальное продление жизни: вещества против старения

VK corporate blog Popular science Health

Картина Евгении Кашиной «Эликсир бессмертия»

Что нужно делать, чтобы увеличить свои шансы на долгую и здоровую жизнь? Поддерживайте физическую активность, ешьте больше овощей и фруктов, хорошо спите, гуляйте на свежем воздухе, избегайте стрессов, регулярно проходите медицинское обследование — этим рекомендациям уже больше ста лет. На самом деле все бесполезно — вы все равно умрете.

Но есть и хорошие новости: в эпоху нейросетей, генной терапии и машинного обучения стало возможным изучить процесс старения клеток, тканей и органов. Уже сейчас мы знаем некоторые методы замедления скорости старения, а через 10–20 лет, возможно, научимся обращать эти процессы вспять. В любом случае, лучше прямо сейчас задаться целью прожить здоровым дольше, чтобы своими глазами увидеть, сможет ли наука окончательно решить вопрос патологии старения.
Читать дальше →
Total votes 56: ↑51 and ↓5 +46
Views 68K
Comments 224

Базовые принципы машинного обучения на примере линейной регрессии

Open Data Science corporate blog Python *Algorithms *Mathematics *Machine learning *
Здравствуйте, коллеги! Это блог открытой русскоговорящей дата саентологической ложи. Нас уже легион, точнее 2500+ человек в слаке. За полтора года мы нагенерили 800к+ сообщений (ради этого слак выделил нам корпоративный аккаунт). Наши люди есть везде и, может, даже в вашей организации. Если вы интересуетесь машинным обучением, но по каким-то причинам не знаете про Open Data Science, то возможно вы в курсе мероприятий, которые организовывает сообщество. Самым масштабным из них является DataFest, который проходил недавно в офисе Mail.Ru Group, за два дня его посетило 1700 человек. Мы растем, наши ложи открываются в городах России, а также в Нью-Йорке, Дубае и даже во Львове, да, мы не воюем, а иногда даже и употребляем горячительные напитки вместе. И да, мы некоммерческая организация, наша цель — просвещение. Мы делаем все ради искусства. (пс: на фотографии вы можете наблюдать заседание ложи в одном из тайных храмов в Москве).

Мне выпала честь сделать первый пост, и я, пожалуй, отклонюсь от своей привычной нейросетевой тематики и сделаю пост о базовых понятиях машинного обучения на примере одной из самых простых и самых полезных моделей — линейной регрессии. Я буду использовать язык питон для демонстрации экспериментов и отрисовки графиков, все это вы с легкостью сможете повторить на своем компьютере. Поехали.
Читать дальше →
Total votes 89: ↑82 and ↓7 +75
Views 157K
Comments 22

Shazam: алгоритмы распознавания музыки, сигнатуры, обработка данных

Wunder Fund corporate blog Programming *Java *Algorithms *
Translation
В ресторане заиграла почти забытая песня. Вы слушали её в далёком прошлом. Сколько трогательных воспоминаний способны вызвать аккорды и слова… Вы отчаянно хотите послушать эту песню снова, но вот её название напрочь вылетело из головы! Как быть? К счастью, в нашем фантастическом высокотехнологичном мире есть ответ на этот вопрос.

У вас в кармане лежит смартфон, на котором установлена программа для распознавания музыкальных произведений. Эта программа – ваш спаситель. Для того чтобы узнать название песни, не придётся ходить из угла в угол в попытках выудить из собственной памяти заветную строчку. И ведь не факт, что это получится. Программа, если дать ей «послушать» музыку, тут же сообщит название композиции. После этого можно будет слушать милые сердцу звуки снова и снова. До тех пор, пока они не станут с вами единым целым, или – до тех пор, пока вам всё это не надоест.


Мобильные технологии и невероятный прогресс в области обработки звука дают разработчикам алгоритмов возможность создавать приложения для распознавания музыкальных произведений. Одно из самых популярных решений такого рода называется Shazam. Если дать ему 20 секунд звучания, неважно, будет ли это кусок вступления, припева или часть основного мотива, Shazam создаст сигнатурный код, сверится с базой данных и воспользуется собственным алгоритмом распознавания музыки для того, чтобы выдать название произведения.

Как же всё это работает?
Читать дальше →
Total votes 64: ↑58 and ↓6 +52
Views 147K
Comments 22

[ В закладки ] Зоопарк архитектур нейронных сетей. Часть 2

Wunder Fund corporate blog Algorithms *Machine learning *
Translation


Публикуем вторую часть статьи о типах архитектуры нейронных сетей. Вот первая.

За всеми архитектурами нейронных сетей, которые то и дело возникают последнее время, уследить непросто. Даже понимание всех аббревиатур, которыми бросаются профессионалы, поначалу может показаться невыполнимой задачей.

Поэтому я решил составить шпаргалку по таким архитектурам. Большинство из них — нейронные сети, но некоторые — звери иной породы. Хотя все эти архитектуры подаются как новейшие и уникальные, когда я изобразил их структуру, внутренние связи стали намного понятнее.

Читать дальше →
Total votes 42: ↑39 and ↓3 +36
Views 37K
Comments 2

[ В закладки ] Зоопарк архитектур нейронных сетей. Часть 1

Wunder Fund corporate blog Algorithms *Machine learning *
Translation


Это первая часть, вот вторая.
За всеми архитектурами нейронных сетей, которые то и дело возникают последнее время, уследить непросто. Даже понимание всех аббревиатур, которыми бросаются профессионалы, поначалу может показаться невыполнимой задачей.

Поэтому я решил составить шпаргалку по таким архитектурам. Большинство из них — нейронные сети, но некоторые — звери иной породы. Хотя все эти архитектуры подаются как новейшие и уникальные, когда я изобразил их структуру, внутренние связи стали намного понятнее.
Читать дальше →
Total votes 51: ↑50 and ↓1 +49
Views 85K
Comments 14

Методы оптимизации нейронных сетей

Algorithms *Mathematics *Machine learning *

В подавляющем большинстве источников информации о нейронных сетях под «а теперь давайте обучим нашу сеть» понимается «скормим целевую функцию оптимизатору» лишь с минимальной настройкой скорости обучения. Иногда говорится, что обновлять веса сети можно не только стохастическим градиентным спуском, но безо всякого объяснения, чем же примечательны другие алгоритмы и что означают загадочные \inline \beta и \inline \gamma в их параметрах. Даже преподаватели на курсах машинного обучения зачастую не заостряют на этом внимание. Я бы хотел исправить недостаток информации в рунете о различных оптимизаторах, которые могут встретиться вам в современных пакетах машинного обучения. Надеюсь, моя статья будет полезна людям, которые хотят углубить своё понимание машинного обучения или даже изобрести что-то своё.


image


Под катом много картинок, в том числе анимированных gif.

Читать дальше →
Total votes 78: ↑78 and ↓0 +78
Views 182K
Comments 73

Боли в руках при работе за компьютером. Часть 2. Освобождаем надплечья и шею

Lifehacks for geeks Brain Health
Tutorial
Частый совет напряжённому человеку: «Чего напрягся – расслабься, получай удовольствие…». Что происходит в результате? – Человек напрягается еще больше!

В прошлой статье вы познакомились с основными проблемами, вызывающими боли в руках при работе за компьютером.
image

Теперь пришло время практики. Напряжение в шее и надплечьях – «не снимаемый груз на плечах» самая частая проблема, с которой обращаются за помощью ко мне, как преподавателю соматики. Сегодня мы будем учиться снимать напряжение в шее и надплечьях.

Урок займет 15-20 минут, вы можете делать его сидя, не отходя от компьютера. Под катом – видео урока, правила выполнения соматических уроков и текстовая расшифровка расширенной версии урока (осторожно – очень много букв!).

Total votes 28: ↑28 and ↓0 +28
Views 68K
Comments 33

Глубокое обучение для новичков: тонкая настройка нейронной сети

Wunder Fund corporate blog Algorithms *Machine learning *
Tutorial
Translation

Введение


Представляем третью (и последнюю) статью в серии, задуманной, чтобы помочь быстро разобраться в технологии глубокого обучения; мы будем двигаться от базовых принципов к нетривиальным особенностям с целью получить достойную производительность на двух наборах данных: MNIST (классификация рукописных цифр) и CIFAR-10 (классификация небольших изображений по десяти классам: самолет, автомобиль, птица, кошка, олень, собака, лягушка, лошадь, корабль и грузовик).
Читать дальше →
Total votes 22: ↑19 and ↓3 +16
Views 90K
Comments 1

Класс дедлоков про дедлок классов

Одноклассники corporate blog Java *


Знаете ли вы, как избежать дедлоков в своей программе? Да, этому учат, про это спрашивают на собеседованиях… И тем не менее, взаимные блокировки встречаются даже в популярных проектах серьёзных компаний вроде Google. А в Java есть особый класс дедлоков, связанный с инициализацией классов, простите за каламбур. Такие ошибки легко допустить, но трудно поймать, тем более, что сама виртуальная машина вводит программиста в заблуждение.

Сегодня пойдёт речь про взаимные блокировки при инициализации классов. Я расскажу, что это такое, проиллюстрирую примерами из реальных проектов, попутно найду багу в JVM, и покажу, как не допустить такие блокировки в своём коде.

Читать дальше →
Total votes 45: ↑45 and ↓0 +45
Views 37K
Comments 16

Топ-100 статей по машинному обучению и анализу данных

Machine learning *
Этот пост построен по аналогии с постом «Хабрасливки: золотые посты «Хабрахабра» и Geektimes», но по машинному обучению и анализу данных. Выборку пришлось корректировать вручную, т.к. попали не относящиеся к теме сообщения, имеющие высокие оценки (возможно несколько осталось) и, наоборот, не попали несколько из лучших хаба «Машинное обучение». «Сливки» получились жидкие — самая высокая оценка — 312, самая низкая — 50, поэтому включены посты, не менее 80% голосов за которые положительны, а не 98%.


Читать дальше →
Total votes 47: ↑43 and ↓4 +39
Views 46K
Comments 15

Deconvolutional Neural Network

Нордавинд corporate blog Algorithms *Image processing *Compilers *
Tutorial
Использование классических нейронных сетей для распознавания изображений затруднено, как правило, большой размерностью вектора входных значений нейронной сети, большим количеством нейронов в промежуточных слоях и, как следствие, большими затратами вычислительных ресурсов на обучение и вычисление сети. Сверточным нейронным сетям в меньшей степени присущи описанные выше недостатки.

Свёрточная нейронная сеть (англ. convolutional neural network, CNN) — специальная архитектура искусственных нейронных сетей, предложенная Яном Лекуном и нацеленная на эффективное распознавание изображений, входит в состав технологий глубокого обучения (англ. deep leaning). Эта технология построена по аналогии с принципами работы зрительной коры головного мозга, в которой были открыты так называемые простые клетки, реагирующие на прямые линии под разными углами, и сложные клетки, реакция которых связана с активацией определённого набора простых клеток. Таким образом, идея сверточных нейронных сетей заключается в чередовании сверточных слоев (англ. convolution layers) и субдискретизирующих слоев (англ. subsampling layers, слоёв подвыборки).[6]

image
Рис 1. Архитектура сверточной нейронной сети

Ключевым моментом в понимании сверточных нейронных сетей является понятие так называемых «разделяемых» весов, т.е. часть нейронов некоторого рассматриваемого слоя нейронной сети может использовать одни и те же весовые коэффициенты. Нейроны, использующие одни и те же веса, объединяются в карты признаков (feature maps), а каждый нейрон карты признаков связан с частью нейронов предыдущего слоя. При вычислении сети получается, что каждый нейрон выполняет свертку (операцию конволюции) некоторой области предыдущего слоя (определяемой множеством нейронов, связанных с данным нейроном). Слои нейронной сети, построенные описанным образом, называются сверточными слоями. Помимо, сверточных слоев в сверточной нейронной сети могут быть слои субдискретизации (выполняющие функции уменьшения размерности пространства карт признаков) и полносвязные слои (выходной слой, как правило, всегда полносвязный). Все три вида слоев могут чередоваться в произвольном порядке, что позволяет составлять карты признаков из карт признаков, а это на практике означает способность распознавания сложных иерархий признаков [3].

Что же именно влияет на качество распознавания образов при обучении сверточных нейронных сетей? Озадачившись данным вопросом, наткнулись на статью Мэттью Зайлера (Matthew Zeiler).
Читать дальше →
Total votes 20: ↑18 and ↓2 +16
Views 58K
Comments 0

Information

Rating
Does not participate
Registered
Activity