
Среди всех методов ансамблирования особое внимание заслуживают две очень мощные техники, известные как стекинг (stacked generalization) и блендинг, особенность которых заключается в возможности использования прогнозов не только однородных, но и сразу нескольких разных по природе алгоритмов в качестве обучающих данных для другой модели, на которой будет сделан итоговый прогноз. Например, прогнозы логистической регрессии и градиентного бустинга могут быть использованы для обучения случайного леса, на котором уже будет выполнен итоговый прогноз.
Стекинг и блендинг очень схожи между собой, однако между ними есть существенные различия, заключающиеся в разделении и использовании тренировочных данных. Рассмотрим более подробно как это происходит.