Глубокое обучение с R и Keras на примере Carvana Image Masking Challenge

Привет, Хабр!
Пользователи R долгое время были лишены возможности приобщиться к deep learning-у, оставаясь в рамках одного языка программирования. С выходом MXNet ситуация стала меняться, но своеобразная документация и частые изменения, ломающие обратную совместимость, все еще ограничивают популярность данной библиотеки.
Гораздо привлекательнее выглядит использование R-интерфейсов к TensorFlow и Keras с бекендами на выбор (TensorFlow, Theano, CNTK), подробной документацией и множеством примеров. В этом сообщении будет разобрано решение задачи сегментации изображений на примере соревнования Carvana Image Masking Challenge (победители), в котором требуется научиться отделять автомобили, сфотографированные с 16 разных ракурсов, от фона. "Нейросетевая" часть полностью реализована на Keras, за обработку изображений отвечает magick (интерфейс к ImageMagick), параллельная обработка обеспечивается parallel+doParallel+foreach (Windows) или parallel+doMC+foreach (Linux).






Метод (алгоритм) Виолы и Джонса [1] является одним из способов выявления границ объектов на изображении. Хотя алгоритм, разработанный П. Виолой и М. Джонсом еще в 2001 году, был первоначально ориентирован на быстрый поиск лиц на изображениях, сейчас разнообразные вариации этого популярного алгоритма с успехом используются в различных задачах поиска границ:




Привет Хабр!




Далеко не все ответы можно найти в Интернет. Особенно если вопрос ваш относится к достаточно узкой или новой области — тут необходима консультация гуру, Владельца Тайного Знания. В традициях блога Intel — проведение блого-семинаров, построенных на вопросах читателей. На эти вопросы отвечают эксперты Intel, принимавшие непосредственное участие в создании технологий и продуктов — кому, как не им знать все детали?