
Хабр, привет! Хочу пригласить всех дата сайентистов принять участие в небольшом опросе об инструментах, которые вы используете в своей работе. Результаты опроса обязательно опубликуем в нашем блоге.
Основа искусственного интеллекта
Всем привет!
23-24 ноября в Digital October проходил хакатон по анализу данных в HR-сфере, в котором победила команда выпускников нашей программы "Специалист по большим данным". Кирилл Данилюк, Игорь Парфенов, Егор Андреев и Александр Иваночкин делятся своим решением и впечатлениями от участия.
Целью статьи является попытка сравнительного анализа основных подходов в решении задач семантического анализа текстов, их различиях и эффективности на уровне концепций, без учета нюансов, комбинаций вариантов и возможных трюков, способствующих улучшению ожидаемого результата.
На сегодняшний день существует огромное количество материалов описывающий те или иные техники решения задач семантического анализа текстов. Это и латентно-семантический анализ, SVM-анализ, «перенос-свертка» и многое другое. Писать очередную статью про обзор и сравнение конкретных алгоритмов – это значит впустую потрать время.
Мне бы хотелось в рамках нескольких статей обсудить базовые идеи и проблемы, лежащие в основе семантического анализа с точки зрения их практического применения, если можно так выразится, с базовой философско-онтологической точки зрения. В какой степени возможно использовать порождающие грамматики для анализа текста? Накапливать ли варианты написания и разного рода "корпуса" или разрабатывать алгоритмы анализа на основании правил?
В рамках нашего рассуждения я осознанно постараюсь уйти от каких-либо терминов и устоявшихся выражений, ибо как говорил У. Куайн – термины это всего лишь имена в рамках онтологий не имеющие никакого практического значения для решения задач логики и понимания чего-либо в частности.[1] Поэтому, с его позволения, будем опираться на единичные дескрипции Рассела, а проще говоря, давать полные описания в ущерб существующим устоявшимся терминам.
Онлайн-курсы, кроме своей удобности и доступности, славятся тем, что на них необычайно легко забивать, что с успехом и делают многие слушатели. Забивать слушателям случается по самым разным причинам — непонятен курс, пропущен дедлайн, не успел набрать баллы, вышел Fallout 4 – у всех свои оправдания. А вот у нас оправданий быть не может: если человек покидает курс, мир теряет потенциального разработчика или специалиста по анализу данных, а ещё киловатт-часы и затраченное нашим героем время.
Самая сложная задача здесь — определить, кто из пользователей убежит, а зная их, уже намного проще предотвратить потери: “предупрежден, значит вооружен”.
В конце статьи вы узнаете, как с помощью решения проблемы попасть на хакатон по анализу данных
Попробуем решить задачу поиска аномалий в звуке.
Микрофоны, на данное время, представляют из себя одни из самых распространенных универсальных детекторов. Они маленькие, дешевые, надежные. И они по-умолчанию присутствуют в сотовых телефонах. Их можно использовать практически везде. Поэтому задача обработки звука, не только речи, стоит перед нами прямо сейчас. Это классический пример Low hanging fruit — "низко висящего фрукта". :)