
Прошлым летом в свет вышла новая архитектура нейронных сетей под названием Kolmogorov-Arnold Networks (KAN). На момент выхода статьи про KAN эта новость произвела фурор в мире машинного обучение, так как KAN показывала существенный прирост в качестве аппроксимации различных сложных функций. Ошибка новых сетей падает значительно быстрее при увеличении числа параметров. Однако, за все приходится платить, и цена таких маленьких значений функции ошибки - медленное обучение: KAN обучается примерно в 10 раз медленнее, чем старый добрый MLP. Из всего этого возникает вопрос: насколько все же уместно использование новой архитектуры вместо привычных всем MLP?
В данной статье будет найдена функция, которая может быть реализована с помощью двухслойного KAN полиномиальной ширины, но не может быть приближена никакой двухслойной ReLU MLP сетью с полиномиальной шириной