Создание приложения для анализа данных машинного обучения

Нейронные сети очень мощны для выполнения предиктивного анализа и решения аналитических задач. Они широко используются для классификации данных, чтобы обнаруживать закономерности и делать прогнозы. Бизнес-кейсы варьируются от классификации и защиты данных клиентов до классификации текста, поведения потребителей и многих других задач.
Чтобы показать, как создать приложение для выполнения анализа данных для решения задач классификации, команда Windows ML создала руководство «Анализ данных с помощью Pytorch и машинного обучения Windows». В этом руководстве показано, как обучить модель нейронной сети на основе табличного набора данных с помощью библиотеки PyTorch и как развернуть эту модель в приложении машинного обучения Windows, которое может работать на любом устройстве Windows.
Хотя в этом руководстве используется набор данных в форматах Excel или csv, описанный в нем процесс работает для любого табличного набора данных и научит вас, как выполнять прогнозы и использовать возможности Windows ML для вашего собственного уникального бизнес-кейса.


















